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Notation and Conventions

Throughout, the calligraphic letters A,B,C,D,E and so on will usually refer
to some flavour of category (1-category, bicategory, 8-category etc.). Fracture
symbols A,B,C,F,U,N and so on will usually refer to some flavour of functors. Let
C be a category. The associated Hom-set for two given objects c, c1 is denoted by
Cpc, c1q and the corresponding Hom-set functor is written as Cp´,´q : Cop ˆ C Ñ

Set. The covariant Yoneda embedding

よ : C Ñ SetC
op
, c ÞÑ Cp´, cq

is denoted by the japanese letter よ which is phonetically given by "yo". The
contravariant Yoneda embedding

ふ : Cop Ñ SetC, c ÞÑ Cpc,´q

is denoted by the japanese letter ふ which is phonetically given by "fu". To make
explicit to which category such a Yoneda embedding corresponds to we shall some-
times write よC and ふC. For functors F,U : C Ñ D we shall sometimes write

DpF,´q : Cop ˆ D Ñ Set, Dp´,Uq : Cop Ñ Set, DpF,Uq : Cop ˆ C Ñ Set

for the induced Hom-functors given by the compositions

Cop ˆ D Dop ˆ D Set

Dop ˆ C Dop ˆ D Set

Cop ˆ C Dop ˆ D Set

Fop
ˆid Dp´,´q

idˆU Dp´,´q

Fop
ˆU Dp´,´q

where Fop : Cop Ñ Dop denotes the opposite functor of F.
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Abstract

The unknown thing to be known
appeared to me as some stretch of
earth or hard marl, resisting
penetration. . . the sea advances
insensibly in silence, nothing seems
to happen, nothing moves, the
water is so far off you hardly hear
it. . . yet it finally surrounds the
resistant substance.

Alexander Grothendieck, Récoltes
et semailles, 1985–1987, pp.

552-3-1 The Rising Sea

The best gauge to determine how good a physical theory really is, is by look-
ing at the predictions the theory provides and comparing the resulting numbers
with real-world experiments. With regards to this measure, Quantum Field The-
ory (QFT) is probably the best physical theory there is to this date. Yet, a fully
general mathematically rigorous formulation of (non-topological) QFT is missing.
In this thesis we will study the functorial approach to QFT. More specifically, we
will study the specific approach taken in [16] and [17]. In particular, [17] provides
a classification theorem for smooth spaces of QFTs, referred to as the geometric
cobordism hypothesis. The geometric cobordism hypothesis is a generalization of
the topological cobordism hypothesis, which can be traced back to Baez and Dolan
(1995), and was later rigorously formulated by Lurie in [24].

This work aims to accomplish two goals. The first of these is to provide a self-
contained introduction to the somewhat intimidating realm of smooth functorial
field theory. This is why the first six chapters of this thesis are devoted to the
study of notions like simplicial homotopy theory, enriched category theory, model
categories, 8-sheaves, 8-categories etc. The only prerequisites to be had in order
to be able to follow the material is a good understanding of (ordinary) category
theory (algebraic topology is helpful, but not needed). The second goal of this
thesis is to provide a better understanding of the construction of smooth bordism
8-categories endowed with geometric structures as defined in [16]. This is done by
first providing the rigorous construction of these objects, and by then looking at
some low-dimensional examples thereof. With that in hand, a smooth field theory
with some prefixed geometric structure should then just be an 8-functor from the
given smooth bordism 8-category to some 8-category of values. From there, we
will consider smooth spaces of field theories with prefixed geometry and explain
the geometric cobordism hypothesis, which, roughly put, states that such a space
of field theories is equivalent to “morphisms” from the given geometric structure to
the maximal 8-subgroupoid of fully dualisable objects of the target 8-category.



4

Abstrakt (Deutsch)

Wie gut eine physikalische Theorie wirklich ist, lässt sich am besten feststellen,
wenn man die Vorhersagen der Theorie betrachtet und die daraus resultierenden
Zahlen mit realen Experimenten vergleicht. Im Hinblick auf diesen Maßstab ist
die Quantenfeldtheorie (QFT) wahrscheinlich die beste physikalische Theorie, die
es bis heute gibt. Dennoch fehlt eine vollständig allgemeine, mathematisch rig-
orose Formulierung der (nicht-topologischen) QFT. In dieser Arbeit werden wir
den funktoriellen Ansatz zur QFT studieren. Genauer gesagt, werden wir den
spezifischen Ansatz in [16] und [17] untersuchen. Insbesondere liefert [17] ein Klas-
sifikationstheorem für glatte Räume von QFT, das als die geometrische Kobordis-
mushypothese bezeichnet wird. Die geometrische Kobordismushypothese ist eine
Verallgemeinerung der topologischen Kobordismushypothese, welche auf Baez und
Dolan (1995) zurückzuführen ist, und später von Lurie in [24] rigoros formuliert
wurde.

Mit dieser Arbeit sollen zwei Ziele erreicht werden. Das erste Ziel besteht darin,
eine in sich geschlossene Einführung in das etwas einschüchternde Gebiet der glatten
funktoriellen Feldtheorie zu geben. Aus diesem Grund sind die ersten sechs Kapitel
dieser Arbeit dem Studium von Gebieten wie simplizialer Homotopietheorie, an-
gereicherter Kategorientheorie, Modellkategorien, 8-Garben, 8-Kategorien usw.
gewidmet. Die einzigen Voraussetzungen, die man haben muss, um dem Material
folgen zu können, ist ein gutes Verständnis der (gewöhnlichen) Kategorientheorie
(algebraische Topologie ist hilfreich, aber nicht erforderlich). Das zweite Ziel dieser
Arbeit ist es, ein besseres Verständnis für die Konstruktion von glatten Bordismus-
8-Kategorien zu schaffen, die mit geometrischen Strukturen ausgestattet sind, wie
sie in [16] definiert sind. Dies geschieht, indem wir zunächst die rigorose Konstruk-
tion dieser Objekte bereitstellen und dann einige niedrig-dimensionale Beispiele
dafür betrachten. Eine glatte Feldtheorie mit einer vordefinierten geometrischen
Struktur sollte dann einfach ein 8-Funktor von der gegebenen glatten Bordismus
8-Kategorie zu einer 8-Kategorie von Werten sein. Von dort aus werden wir glatte
Räume von Feldtheorien mit gegebener Geometrie betrachten und die geometrische
Kobordismus-Hypothese erklären, die, grob gesagt, besagt, dass ein solcher Raum
von Feldtheorien äquivalent zu Morphismenvon der gegebenen geometrischen Struk-
tur zum maximalen 8-Untergruppoid von vollständig dualisierbaren Objekten der
Ziel-8-Kategorie ist.
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1. Introduction

The integration of mathematical concepts from homotopy theory into the study
of physics is increasingly recognized as a valuable approach for tackling fundamen-
tal problems. This framework offers powerful tools that facilitate a deeper under-
standing of complex phenomena and may pave the way for solutions to currently
intractable physical questions. One such compelling reason to go homotopy coher-
ent lies in the quest for a rigorous formulation of quantum field theory. The lack
of a proper definition for the Feynman path integral, a fundamental concept in this
field, hinders its mathematical foundation. Homotopy theory (and in turn higher
category theory) offers a compelling approach to tackle this issue. Its tools and
techniques enable us to construct a solid framework for the Feynman path integral,
paving the way for a rigorous treatment of quantum field theory. In this thesis we
will first provide a self-contained introduction to some of the mathematical machin-
ery that is common practice within the subject of smooth functorial field theory.
After that, we will concern ourselves with the study of smooth 8-bordism cate-
gories along with the classification theorem regarding smooth field theories called
the geometric cobordism hypothesis (as stated and proved in [17]). The geometric
cobordism hypothesis is a generalization of the topological cobordism hypothesis
which dates back to Baez and Dolan (1995) and was popularized by Jacob Lurie in
his paper [24].

In this introduction we shall quickly sketch each individual part of the thesis and
give some of the main ideas:

1.1. On Part I. As already mentioned, the first part of the thesis is on prerequi-
sites.

1.1.1. Simplicial Sets. In the first chapter we introduce the notion of a simplicial
set. Good references on this subject are [15, 33, 21]. The idea of a simplicial set is
that, up to homotopy, it is just as good a notion for space as a topological space, yet
simplicial sets are far easier to work with as their nature is combinatorial and every
such simplicial set may be obtained by glueing triangles, tetrahedra and higher
dimensional versions of these. For example, a simplicial set could look like:

‚ ‚

‚ ‚

‚ ‚ ‚

‚ ‚

‚

More precisely, a simplicial set X‚ is a list of sets

X0, X1, X2, X3, . . .

indexed by the natural numbers. Moreover, there are so called face and degeneracy
maps dpnq

i : Xn Ñ Xn´1 and s
pnq

i : Xn Ñ Xn`1. These maps are then subject to
some relations. One can then diagrammatically depict a simplicial set by

X0 X1 X2 . . .
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where we only drew the face maps. The question now is why would we be interested
in having a combinatorial variant to topological spaces. First of all, it turns out
that the category of simplicial sets is rich enough so that the theory of category
theory, i.e. the category of small categories, is fully faithfully contained within the
category of simplicial sets. This is seen by taking the nerve of a category. Indeed,
for a category C, denote by NC‚ the collection of sets

!

NCn

)

nPN
:“

!

n-tuples of composable morphisms in C
)

where 0-tuples of composable morphisms are identified with objects in the category
C. It is shown that this nerve construction extends to yield a functor between
the category of small categories and the category of simplicial sets N : Cat Ñ sSet
which is fully faithful. Moreover, the category of simplicial sets allows for the
notion of simplicial homotopy theory, which is equivalent in the proper sense to the
homotopy theory of topological spaces. In that framework, the following picture of
two functors and a natural transformation between these

C D

F

U

ζ

is equivalently given by saying that we have a simplicial homotopy between the
respective nerves of functors. In particular, after having developed more machinery
it will be noted that the category of simplicial sets and its associated homotopy
theory is a model for the notion of 8-groupoids.

1.1.2. Model Categories. After having concerned ourselves with simplicial sets we
come to the concept of a model category. A good reference for this field is [19].
At that point we realize that the category of simplicial sets, just like the category
of topological spaces is a model category. Roughly put, model category theory is
the study of abstract homotopy theories. The objects of study in this field are
the so-called model categories, which can be thought of as categories which allow
for a proper notion of deformation, that is, some object A may be deformed (is
homotopic) to another object B. More precisely, a model category is a category
C with distinguished classes of morphisms WC,FibC and CofC, referred to as weak
equivalences, fibrations and cofibrations which are subject to some axioms. Here the
canonical example to think of is the model category of topological spaces, which,
for example, has as its set of weak equivalences the set of weak homotopy equiva-
lences. There now has to be some notion of equivalence for model categories. This
concept is referred to as a Quillen equivalence of model categories. The existence
of such a Quillen equivalence between two model categories says that the respective
homotopy theories are precisely the same. The most prominent such equivalence is
the adjunction between the geometric realization functor | ´ | and the fundamental
8-groupoid functor Π⩽8:

sSet Top
|´|

Π⩽8

Quillen

%

Roughly put, the left adjoint |´| takes a simplicial set and realizes it as a topological
space, e.g., the geometric realization of the above depiction of a simplicial set is
given by filling out the triangles to proper triangles with area in R2 and then glueing
them along their edges. The right adjoint Π⩽8 takes a topological space X and
maps it to the simplicial set Π⩽8X‚ for which we have:

Π⩽8X0 :“ points of X
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Π⩽8X1 :“ paths in X
Π⩽8X2 :“ homotopies of paths in X

...
Π⩽8Xn :“ homotopies of homotopies ... of paths in X

Finally, we will talk about the notion of what it means for a functor between model
categories to be homotopical (i.e. it preserves all the homotopical information
of our given model category), and we will discuss that if our functor fails to be
homotopical, we may still have a chance by taking the respective left or right
derived functors (if they exist), which are the closest homotopical approximations
to our initial functor. In particular, this will give rise to the notion of homotopy
limit and colimit functors, which are right and left derived functors of the usual
limit and colimit functors, respectively.

1.1.3. 8-Categories. Good references on 8-categories are given by [26] and the
respective parts in [8] and [24]. An 8-category should be the precise mathematical
entity of a higher dimensional category in the sense that it should not only have
objects and morphisms, but also morphisms between morphisms and morphisms
between morphisms between morphisms and so on. In other words, an 8-category
C should be a collection of sets

C0,C1,C2,C3, . . .

where C0 is the set of objects while Cn denotes the set of n-morphisms. In particu-
lar, there should be source and target maps for each individual level of morphisms

spnq : Cn Ñ Cn´1, tpnq : Cn Ñ Cn´1

as well as composition maps

cpnq : Cn ˆCn´1
Cn Ñ Cn

where CnˆCn´1Cn denotes composable n-morphisms with regards to the aforemen-
tioned source and target maps. Moreover, we need units with respect to composition
in each layer:

upnq : Cn´1 Ñ Cn

A canonical example of such an entity is the fundamental 8-groupoid Π⩽8X for
some topological space X. We recall that objects are given by points, 1-morphisms
are given by paths, 2-morphisms are given by homotopies of paths and so on. Com-
position of morphisms is given by concatenation of paths, homotopies, etc. The
unit maps are the constant paths, homotopies, and so on, while source and target
maps are the obvious choices. Upon further inspection we realize that composition
of paths, homotopies, . . . is not unique, but only unique up to homotopy. This
is a general theme when it comes to 8-categories: Composition will not be as-
sumed to be unique, but only unique up to homotopy. The reason for this is that
strict 8-categories do not capture the most interesting examples that might pop
up in practice (as for example topological spaces). In particular, when we consider
Π⩽8X yet again we notice that all morphisms (in every layer) have an inverse
up to (higher) homotopy. This is the reason for calling Π⩽8 the fundamental 8-
groupoid functor, as, by definition, Π⩽8X is an 8-groupoid (all morphisms have
inverses up to homotopy) for all topological spaces X. In fact, Grothendieck’s ho-
motopy hypothesis states that any sensible notion of 8-groupoids should imply that
8-groupoids are precisely the homotopy types of topological spaces. Using this as
the literal definition is then saying that any 8-groupoid is realized by considering
Π⩽8X for some suitable topological space X.
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An 8-groupoid is also often referred to as p8, 0q-category, as although the category
at hand has infinitely many layers, 0 layers of them have non-invertible morphisms.
An p8, dq-category on the other hand also has infinitely many layers, but only
the first d layers of morphisms may contain non-invertible morphisms, while all
pd` 1q, pd` 2q, . . .-morphisms are invertible up to homotopy. We can use an induc-
tive formulation to roughly define the notion of p8, dq-category. An p8, 1q-category
C is the data of a set of objects C0, and an 8-groupoid (a space) of 1-morphisms
C1. The points C1,0 :“ Π⩽8pC1q0 in this space of morphisms are the 1-morphisms
in C, the paths are the 2-morphisms and so on. An p8, 2q-category C is then the
data of a set of objects C0 as well as an p8, 1q-category of 1-morphisms C1. The
1-morphisms in C are the objects of C1, while the higher morphisms are given
by the fundamental 8-groupoid of the space of 1-morphisms of C1, denoted by
Π⩽8pC1,1q. Continuing in this way, an p8, dq-category is the data of a set of ob-
jects C0 and an p8, d´ 1q-category C1 of 1-morphisms. We then remind ourselves
that the model category of simplicial sets and the model category of topological
spaces have the same homotopy theories (this is witnessed by the aforementioned
Quillen equivalence). In that sense, instead of using topological spaces as a def-
inition for 8-groupoid we can also just use very nice simplicial sets called Kan
complexes as our model for 8-groupoids. Using again an inductive procedure as
before, we quite naturally arrive at the definition of d-fold complete Segal spaces
which present a fully rigorous simplicial version of p8, dq-categories.

This is not the end of the road however, we want to define p8, dq-categories with
extra structure. In fact, we will make sense of the notion of symmetric monoidal
p8, dq-category, which roughly put is an p8, dq-category C equipped with a tensor
8-functor b : C ˆ C Ñ C, that is, a collection of maps

!

bn : Cn ˆ Cn Ñ Cn

)

nPN

where Cn denotes the set of n-morphisms in C (if n “ 0, Cn is the set of objects),
which satisfy coherence conditions. Morally, b tells us how to multiply objects,
1-morphisms, . . . in C. We still do not stop there and define the notion of smooth
symmetric monoidal 8-categories. In order to give the idea, let Cart be the category
of cartesian spaces, which has as its set of objects open subsets U of Rn, for some n,
such that U is smoothly diffeomorphic to Rn. Morphisms in Cart are then simply
smooth maps between cartesian spaces. Vaguely put, a smooth symmetric monoidal
p8, dq-category C is then nothing else than a contravariant functor into symmetric
monoidal p8, dq-categories

C : Cartop Ñ Catb

p8,dq
, U ÞÑ CpUq

such that for any good open cover tViuiPI of U in Cart we have that CpUq may be
given as the homotopy limit of the diagram
ś

iPI

CpViq
ś

i0,i1PI

CpVi0 X Vi1q
ś

i0,i1,i2PI

CpVi0 X Vi1 X Vi2q . . .

Morally, this says that C is an 8-sheaf of symmetric monoidal p8, dq-categories,
that is, local higher dimensional information can be glued to obtain higher dimen-
sional global information. Finally, we will define the notion of full dualizability for
smooth symmetric monoidal p8, dq-categories, which more or less says that each
layer (also all objects) have adjoints (duals). One may then collect all this infor-
mation to arrive at the model category of smooth symmetric monoidal categories
with duals C8Catb,:

p8,dq
.
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1.2. On Part II. This part of the thesis is based upon the works [16] and [17], as
well as on private communication with Dmitri Pavlov.

If we interpret an 8-category as a language in the literal sense, then a quantum field
theory would be a translation from some language of spacetime to some language
of values. More precisely, a d-dimensional smooth quantum field theory is a smooth
symmetric monoidal 8-functor from some smooth p8, dq-category of bordisms to
some smooth p8, dq-category of values. The first goal of this part of the thesis is
to properly introduce these smooth bordism categories.

1.2.1. Smooth Bordism 8-categories. Since we want our bordism categories to be
endowed with some geometry (e.g. Riemannian metrics), we start off this chapter
by properly introducing the notion of a d-dimensional geometric structure with
isotopies as discussed in [16]. Very roughly put, a geometric structure is an 8-sheaf,
on the simplicially enriched category FEmbd of fiberwise embeddings, valued in 8-
groupoids. To give at least some explanation here, the category FEmbd has as its
set of objects fiberwise d-dimensional submersions p : M ↠ U , where M is a smooth
manifold while U P Cart is a cartesian space. After discussing some examples in
this formalism, we will move on to the definition of the smooth p8, dq-category
of bordisms with geometry S, denoted BordSp8,dq, where S is some d-dimensional
geometric structure. The construction is roughly as follows:

‚ Objects of BordSp8,dq are smooth families of disjoint unions of points in a
d-dimensional manifold equipped with a d-dimensional germ of the given
geometric structure S.

‚ 1-morphisms are smooth families of 1-dimensional manifolds with bound-
aries between smooth families of disjoint unions of points embedded within
a d-dimensional manifold, which is again equipped with a d-dimensional
germ of the given geometric structure.

‚ . . .
‚ d-morphisms are smooth families of d-dimensional manifolds with corners

which are equpped with a d-dimensional germ of the given geometric struc-
ture S.

‚ d ` 1-morphisms are smooth families of isotopies of diffeomorphisms be-
tween d-dimensional manifolds with corners.

‚ d` 2-morphisms are smooth families of isotopies of isotopies ... etc.
‚ . . .

After giving a precise definition of the above, we will carry on to investigate prop-
erties of the assignment S ÞÑ BordSp8,dq. It will turn out that this gives rise to a
functor

Bord
p´q

p8,dq
: Structd Ñ C8Catb,:

p8,dq

from the category of geometric structures to the category of smooth symmetric
monoidal p8, dq-categories with duals, which itself will be an 8-cosheaf. This is
the so-called locality property, which may also be phrased by saying that Bord

p´q

p8,dq

preserves homotopy colimits. Finally, we will discuss the symmetric monoidal struc-
ture of BordSp8,dq and its duals as well as consider specific examples including Rie-
mannian bordism categories.

1.2.2. Smooth Functorial Field Theories. Finally, we can say more clearly what a
smooth functorial field theory with geometry S really should be, namely a smooth
symmetric monoidal 8-functor BordSp8,dq Ñ C, where C is some smooth symmetric
monoidal p8, dq-category of values. We may then first state the content of the
framed geometric cobordism hypothesis. To this end, we first realize that if we take
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the (enriched) Yoneda embeddingよpRdˆU ↠ Uq of the canonical projection map
pRd ˆ U ↠ Uq P FEmbd, then the resulting geometric structure models smooth
U -families of framings for the given input manifolds. We can then consider the
smooth symmmetric monoidal p8, dq-functor category

Funb
pBord

よpRdˆU↠Uq

p8,dq
,Cq

for C some smooth symmetric monoidal p8, dq-category with duals. The first
statement of the framed geometric cobordism hypothesis says that the assignment
U ÞÑ Funb

pBord
よpRdˆU↠Uq

p8,dq
,Cq is actually a functor valued in smooth symmetric

monoidal 8-groupoids:

Cartop Ñ C8Grpdb
8, U ÞÑ Funb

pBord
よpRdˆU↠Uq

p8,dq
,Cq

The second and even more important statement is that evaluation at a U -family of
points gives rise to an equivalence of 8-categories

Funb
pBord

よpRdˆU↠Uq

p8,dq
,Cq

»
ÝÑ MappU,Cˆq

where Cˆ is the maximal full 8-subgroupoid in C, while MappU,Cˆq denotes a
smooth symmetric monoidal 8-groupoid of maps from U to Cˆ. If one forgets
the smoothness property on both sides of the equivalence (by evaluating at the
singleton cartesian space R0) one arrives at

Funb
pBord

よpRdˆU↠Uq

p8,dq
,CqpR0q » CˆpUq

The general geometric cobordism hypothesis makes similar claims. First of all, we
have a functor

Structopd Ñ C8Grpdb
8, S ÞÑ Funb

pBordSp8,dq,Cq

which has values in smooth symmetric monoidal 8-groupoids. Moreover, we have
an equivalence of 8-categories

Funb
pBordSp8,dq,Cq

»
ÝÑ MapFEmbd

pS,Cˆ
d q

where, morally speaking, Cˆ
d is identified with Cˆ (this is not quite true), while

MapFEmbd
pS,Cˆ

d q denotes a smooth symmetric monoidal 8-groupoid of maps from
the geometric structure S to Cˆ

d .
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2. Simplicial Homotopy Theory

Education never ends, Watson. It
is a series of lessons, with the
greatest for the last.

Sherlock Holmes (Sir Arthur
Conan Doyle)

This chapter is based on [11], [28] and [15].

Simplicial sets are a powerful tool in algebraic topology that provide a combi-
natorial framework for studying spaces. They are a way to encode the topology
of a space using a collection of abstract building blocks called simplices, which are
higher-dimensional generalizations of triangles and tetrahedra. In this chapter, we
will explore the basic concepts and properties of simplicial sets, including their
given homotopy theory. In between, we shall also introduce the notion of ends and
coends as they will provide a powerful tool throughout.

2.1. A Theory of Simplices.

Definition 2.1. The simplex category ∆ has
‚ objects rns “ t0, 1, . . . , nu for n P N, and
‚ morphisms f : rns Ñ rms are order preserving maps, i.e., fpiq ⩽ fpjq for

all i ⩽ j.

The simplex category is a combinatorial framework for the collection of topolog-
ical spaces that is made up of the standard topological n-simplices. More precisely,
there is a functor

∆ Top, rns |∆n|
|´|

where generating

|∆n| :“
!

px0, . . . , xnq P Rn`1 | xi ⩾ 0,
ÿ

xi “ 1
)

is endowed with the subspace topology induced from the Euclidean topology on Rn.
On the other hand, a morphism f : rns Ñ rms in the simplex category is mapped
to the continuous map |f | : |∆n| Ñ |∆m| given by

|∆n| Q x ÞÑ

´

ÿ

sPrns : fpsq“i

xs

¯m

i“0
P |∆m|(1)

In order to give a framework for more general topological spaces, one introduces
the notion of a simplicial set, or more generally the notion of a simplicial object.
This is motivated upon noticing that many topological spaces can be obtained by
glueing n-simplices.

Definition 2.2. Let C be a category.
‚ A simplicial object in C is an object in the functor category C∆op

.
‚ A simplicial set is a simplicial object in Set. The category of simplicial

sets will be denoted by sSet :“ Set∆
op

.
‚ For X P sSet we write Xn :“ Xprnsq and Xf :“ Xpfq for any object rns

and any morphism f in the simplex category ∆.
‚ An element x P Xn is called an n-simplex of the simplicial set X.

It is immediate from the Yoneda lemma that we have an embedding ∆ ãÑ sSet
given by rns ÞÑ ∆n :“ ∆p´, rnsq. In particular, for X P sSet we have

Xn – sSetp∆n, Xq
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This means that any n-simplex x P Xn uniquely corresponds to a simplicial map
(natural transformation) x : ∆n Ñ X.

The category ∆ has a generating set of morphisms. Indeed, we may define

coface maps @n ⩾ 0: rn´ 1s
di

↣ rns dipkq “

#

k, if k ă i

k ` 1, if k ⩾ i

codegeneracy maps @n ⩾ 0: rn` 1s
si

↠ rns sipkq “

#

k, if k ⩽ i

k ´ 1, if k ą i

and these maps give rise to the following:

Lemma 2.3. Any morphism f : rns Ñ rms in ∆ can be written as a (unique)
composition

f “ di1 ˝ . . . dir ˝ sj1 ˝ . . . sjl

with 0 ⩽ ir ă . . . ă i1 ⩽ m and 0 ⩽ j1 ⩽ . . . ă jl ă n, where r ´ l “ m´ n.

The above lemma can be understood in an intuitive fashion by staring at

0 0 0 0 0

1 1 1 1

2 2 2 1 2

3 3 3 3

4 4 4 4

5 5 5 2 5

Indeed, the LHS above is a sample arrow r5s Ñ r5s and the RHS gives a decompo-
sition of this arrow into a composition of codegeneracy maps (the stuff to the left
of the dotted line) followed by a composition of coface maps (the stuff to the right
of the dotted line). Seeing that the first half of the RHS is a composition of coden-

eracy maps is done as follows: We start with the arrow r5s
s1
Ñ r4s (which doubles

up at 1), then postcompose this with r4s
s2
Ñ r3s and this in turn we postcompose

with r3s
s2
Ñ r2s. The complete composition s2s2s1 is exactly equal to the morphism

given by everything left to the dotted line. Analogously, the morphism given by
everything right to the dotted line is precisely the composition d5d3d1.
For the notion of a simplicial set, the above Lemma tells us that what a simpli-
cial set X does to morphisms f P ∆ is completely determined by what it does to
codegeneracy and coface maps. Hence the following definition makes sense:

Definition 2.4. Let X P sSet.
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(i) The i-th face operator associated with the simplicial set X is given by

di :“ Xdi : Xn Ñ Xn´1

(ii) The i-th degeneracy operator associated with the simplicial set X is given
by

si :“ Xsi : Xn Ñ Xn`1

(iii) An element x P Xn is called non-degenerate if x R
n´1
Ť

i“0

sipXn´1q.

Definition 2.5. Let X,X 1 P sSet. The product X ˆX 1 P sSet is the simplicial set
given by pX ˆX 1qn “ Xn ˆX 1

n and pX ˆX 1qf “ Xf ˆX 1
f for all objects rns and

all morphisms f in ∆.

Definition 2.6. Let X,Y P sSet. We write Y Ă X and say Y is a simplicial subset
of X, if there is a monomorphism Y ãÑ X.

Remark 2.7. More concretely, Y Ă X if Yn Ă Xn for all rns P ∆ and

Xf |Ycodf “ Yf

for all morphisms f P ∆.

Recall that the standard n-simplex ∆n was defined by ∆p´, rnsq P sSet. There
is a canonical way to extract important simplicial subsets of ∆n:

Definition 2.8. Let J be a subset of the power set Pprnsq of the finite ordinal rns

and define the simplicial subset

∆xJy Ă ∆n

by

∆xJym :“
!

f P ∆n
m | DJ P J : fprmsq Ă J

)

Example 2.9. We list some of the most important simplicial subsets of ∆n:
‚ The standard n-simplex itself is given by ∆n :“ ∆p´, rnsq “ ∆xPprnsqy P

sSet.
– For n “ 2 we have

Ppr2sq “

!

H, t0u, t1u, t2u, t0, 1u, t0, 2u, t1, 2u, t0, 1, 2u

)

We may then visualize ∆2 “ ∆xPpr2sqy as follows:

1

0 2

The vertices of our (filled) triangle are represented by the singletons
0, 1, 2, while the edges are given by the 2-element sets in Ppr2sq. The
triple t0, 1, 2u represents the 2-lined arrow going from the composite
of 0 Ñ 1 and 1 Ñ 2 to the bottom 0 Ñ 2. We think of ∆2 as being
the whole triangle (with area).
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– For n “ 3 we have

Ppr3sq “

!

H, t0u, t1u, t2u, t3u, t0, 1u, t0, 2u, t0, 3u, t1, 2u, t1, 3u, t2, 3u,

t0, 1, 2u, t0, 1, 3u, t0, 2, 3u, t1, 2, 3u, t0, 1, 2, 3u

)

Visualizing ∆3 is then a little harder:

1

3

0

2

The above picture is to be interpreted analogously. The vertices are
the singletons, the edges are given by the 2-element sets and the faces
(the sides of our pyramid) are given by the triples in Ppr3sq while the
3-lined arrow represents the filling t0, 1, 2, 3u.

‚ Consider the subset Bi :“ t0, . . . ,pi, . . . , nu Ă rns along with the induced
collection of subsets

Ji :“ Pprnsqz

!

rns, B0, . . . , pBi, . . . , Bn

)

The i-th face of ∆n is the simplicial set Bi∆
n :“ ∆xJiy.

– For n “ 2 and i “ 0 we have:

J0 “

!

H, t0u, t1u, t2u, t1, 2u

)

We then get a picture:

1

2

The vertices t1u and t2u are depicted in our diagram since they have
a corresponding connecting edge t1, 2u. The singleton t0u, on the
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hand, is not connected to the above one-arrow graph, and therefore
is not pictured at all.

– For n “ 3 and i “ 0 we have:

J0 “

!

H, t0u, t1u, t2u, t3u, t0, 1u, t0, 2u, t0, 3u, t1, 2u, t1, 3u, t2, 3u, t1, 2, 3u

)

We therefore get the following picture:

1

3

2

Again extending on the previous ideas, we really only draw the edges
which happen to be connected by some face.

– Let J :“ Pprnsqztrnsu. The simplicial boundary of ∆n is the simpli-
cial subset B∆n :“ ∆xJy, i.e., B∆n “

Ť

Bi∆
n

– For n “ 2 we have the following picture:

1

0 2
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– For n “ 3 we have the following picture:

1

3

0

2

Hence all that is missing compared to the visualization of ∆3 is the
volume of the pyramid, that is, the squiggly arrow.

‚ Let J :“ Pprnsqztrns, Biu. The i-th simplicial horn of ∆n is the simplicial
subset Λni :“ ∆xJy.

– For n “ 2 and i “ 0, we obtain the picture:

1

0 2
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– For n “ 3 and i “ 0 we have the picture:

1

3

0

2

Looking at the 3-dimensional case, it is clear why this simplicial subset is
called horn.

2.2. Ends and Coends. This chapter is based on the corresponding chapters in
[7] as well as [23].

In the following we shall explain the notion of ends and coends. These will be
very helpful machinery for what is to come.

Definition 2.10. Let F : Aop ˆ A Ñ D be a functor.
‚ A wedge for F is a pair

´

d P D, ψ “

!

ψa : d Ñ Fpa, aq

)

aPA

¯

such that for all morphisms a Ñ ra in A we have a commutative diagram

Fpra,raq

d Fpa,raq

Fpa, aq

ψa Fpa,aÑraq

FpaÑra,raqψ
ra

For a wedge as above, the family of morphisms ψ will usually be denoted
by ψ : d 9ÑF.

‚ A cowedge for F is a pair
´

d P D, φ “

!

φa : Fpa, aq Ñ d
)

aPA

¯
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such that for all morphisms a Ñ ra in A we have a commutative diagram

Fpra,raq

Fpra, aq d

Fpa, aq

φa

φ
ra

Fpa,aÑraq

FpaÑra,raq

For a cowedge as above, the family of morphisms ψ will usually be denoted
by ψ : F :Ñd.

‚ An end of F is a universal wedge
´

ż

A

F P D, ψ :

ż

A

F 9ÑF
¯

for F.
‚ A coend of F is a universal cowedge

´

ż A

F P D, φ : F :Ñ

ż A

F
¯

for F.

More concretely, what does it mean to be a universal (co)wedge for F? Let us
start off with ends: First of all note that the definition of a wedge induces a functor

EF : D
op Ñ Set, d ÞÑ

!

wedges τ : d 9ÑF
)

(2)

An end of F is then defined to be a representation of the functor EF, i.e. there is
an object

ş

A
F P D such that

EF – D
´

´,

ż

A

F
¯

By the Yoneda lemma this datum boils down to the statement that an end is a
terminal object

´

ż

A

F, ζ :

ż

A

F 9ÑF
¯

P elpEFq

in the category of elements (see Remark 2.11) of EF.

Remark 2.11. Recall that, in general, the category of elements elpUq of a functor
U : C Ñ Set has as objects pairs

´

c P C, d P Uc
¯

and morphisms
´

c P C, d P Uc
¯

ÝÑ

´

rc P C, rd P Urc
¯

are morphisms f : c Ñ rc in C such that pUfqpdq “ rd.

Analogously, the definition of a cowedge induces a functor

CF : D Ñ Set, Y ÞÑ

!

cowedges τ : F :Ñd
)

By the same reasoning as above, a coend is simply an initial object
´

ż A

F, ζ : F :Ñ

ż A

F
¯

P elpCFq

Notation 2.12. It is sometimes useful to write
ş

aPA

Fpa, aq and
aPA

ş

Fpa, aq instead of

ş

A

F and
A
ş

F.
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Example 2.13. Let F : Aop ˆ A Ñ Set. Then we have
ż

A

F – Set
´

t‹u,

ż

A

F
¯

–

!

wedges t‹u 9ÑF
)

Note that a wedge t‹u 9ÑF corresponds to a family of elements
´

τpaq P Fpa, aq

¯

aPA

such that for all morphisms a Ñ ra in A we have

Fpa Ñ ra,raqpτpraqq “ Fpa, a Ñ raqpτpaqq

Remark 2.14. The notions of end and coend are dual. Indeed, the coend of a functor
F : AopˆA Ñ D is simply the end of the induced functor F : pAopqopˆAop Ñ Dop.
Therefore, we may restrict ourselves to investigating coends, knowing that any
result that holds for coends can be dualized to yield a result for ends.

Theorem 2.15. If D is cocomplete and F : Aop ˆ A Ñ D is a functor, then the
coend

şA
F exists in D. It is given by the coequalizer of two suitable morphisms

š

pf : aÑraqPA

Fpra, aq
š

aPA

Fpa, aq

ξ‹

ξ‹

Proof. We define the morphisms ξ‹ and ξ‹ by means of the universal property of
the coproduct:

š

pf : aÑraqPA

Fpra, aq
š

aPA

Fpa, aq
š

pf : aÑraqPA

Fpra, aq
š

aPA

Fpa, aq

Fpra, aq Fpra,raq Fpra, aq Fpa, aq

ιf ι
ra

D!ξ‹

Fpra,fq

ιaιf

Fpf,aq

D!ξ‹

A morphism ζ :
š

aPA

Fpa, aq Ñ d with ζξ‹ “ ζξ‹ is then naturally identified with a

cowedge F 9Ñd. Indeed, the cowedge associated to the morphism ζ, also denoted by
the letter ζ, is defined by

ζ “ pζa :“ ζιa : Fpa, aq Ñ dqaPA

It is then not hard to check that

Fpa, aq

Fpra, aq d

Fpra,raq

Fpra,fq

Fpf,aq ζa

ζ
ra

and thus the coequalizer of ζ‹ and ζ‹ is a universal cowedge for F. □

Remark 2.16. If we have a (co)continuous functor L : D Ñ E, then L preserves
(co)ends:

L
´

A
ż

F
¯

–

A
ż

LF, L
´

ż

A

F
¯

–

ż

A

LF
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In particular, we have

Dpd,

ż

aPA

Fpa, aqq –

ż

aPA

Dpd,Fpa, aqq

Dp

aPA
ż

Fpa, aq, dq –

ż

aPA

DpFpa, aq, dq

It turns out that the converse of Theorem 2.15 holds:

Theorem 2.17. Let F : A Ñ D be a functor. Define a functor F1 : Aop ˆ A Ñ D

by

F1pa,raq :“ Fpraq

F1pa,ra Ñ aq :“ Fpra Ñ aq

F1pa Ñ a,raq :“ 1Fra

Then the colimit of F is the coend of F1:

colim
aPA

Fpaq –

aPA
ż

F1pa, aq “

aPA
ż

Fa

Proof. A cowedge ζ : F1 :ÑY is a family of morphisms ζa : Fpaq Ñ d such that for all
a Ñ ra we have a commutative square

Fa Fa

Fra d

FpaÑraq

ζ
ra

ζa

which is exactly a cocone for F. □

Lemma 2.18. Let F : A Ñ D and U : A Ñ D be functors, and consider the induced
Hom functor

DpF,Uq : Aop ˆ A Ñ Set, pa,raq ÞÑ DpFa,Uraq

The end of this functor is given by

DApF,Uq “

ż

aPA

DpFa,Uaq

Proof. From Example 2.13 we know that
ż

aPA

DpFpaq,Upaqq “

!

wedges t‹u 9ÑDpF,Uq

)

The right hand side exactly corresponds to the set of natural transformations F Ñ

U. □

Proposition 2.19 (Fubini for Coends). Let A,B,C be categories and let F : pAˆ

Bqop ˆ pA ˆ Bq Ñ C. Then
aPA
ż

bPB
ż

Fpa, b, a, bq –

pa,bqPAˆB
ż

Fpa, b, a, bq –

bPB
ż

aPA
ż

Fpa, b, a, bq

where the above is to be understood in the sense that if one of these coends exists,
then all of them exist and are isomorphic.

Proof. This immediately follows from the analogous result on colimits, see e.g.
[35]. □
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Coends turn out to be exceptionally useful for many reasons. One such reason
is that coends can be used to decompose functors. In order to derive such a result
we need to introduce some machinery first:

Definition 2.20. Let D be a cocomplete category. The bifunctor d : SetˆD Ñ D

is given as follows:

S d d :“
ž

sPS

d pS, eq P Set ˆ D

For morphisms in Set ˆ D it is sufficient to define d solely on morphisms of the
kind pf, idq and pid, gq (by functoriality). This is done by means of the universal
property of the coproduct:

e S
š

sPS

e
š

sPS

e1
š

sPS

e
š

s1PS1

e

e1 S1 e e1 e

D!fdidD!iddg

ι
rs

g

ι
rs ι

rs ιfp rsq

g f

where rs runs over the set S.

Remark 2.21. The functor d is a copower (or tensoring) of D over Set: This means
that the functor

d : Set ˆ D Ñ D

gives rise to natural isomorphisms

DpS d d1, d2q – SetpS,Dpd1, d2qq

for all S P Set and d1, d2 P D. This follows immediately from

D
´

S d d1, d2

¯

“ D
´

ž

sPS

d1, d
¯

–
ź

sPS

Dpd1, d2q – Set
´

S,Dpd1, d2q

¯

Recall from analysis that if δpx, yq :“ δpx´yq is the shifted Dirac-δ distribution,
then any test function f can be written as

f “

ż

δpx,´qfpxqdx “

ż

δp´, yqfpyqdy

The aforementioned decomposition theorem for functions by means of the Dirac
δ-distribution has a categorical analogue in terms of coends:

Theorem 2.22. Let F : A Ñ D and U : Aop Ñ D be functors, where A is a small
category and D is cocomplete. Then we have the following natural isomorphisms:

F –

aPA
ż

ふad Fa

U –

aPA
ż

よad Ua

where よ,ふ were introduced in .

Remark 2.23. The isomorphisms above are to be understood in the functor cate-
gories DA and DAop

, respectively. Taking the first of the two identities, the functor
aPA

ş

ふAad Fa takes an object ra in A and maps it to the coend
aPA
ż

Apa,raq d Fa
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in the usual sense. Morphisms ra Ñ a are mapped to morphisms between the
respective coends, and these are defined by means of the universal property of the
coend.

Proof of Theorem 2.22. Let d P D be arbitrary. We have natural isomorphisms

D
´

aPA
ż

Apa,raq d Fa, d
¯

–

ż

aPA

DpApa,raq d Fa, dq –

ż

aPA

SetpApa,raq,DpFa, dqq

– SetA
op

pよAra,DpF, dqq – DpFra, dq

where we have used Lemma 2.18 and the Yoneda lemma for the last two isomor-
phisms. Since d P D was arbitrary the claim follows. □

Remark 2.24. One can dualize the above decomposition theorem as follows: Instead
of the bifunctor d one defines a bifunctor ⋔ : SetopˆD Ñ D for a complete category
D by

Setop ˆ D Q pS, dq ÞÑ S ⋔ d :“
ź

sPS

d P D

How this functor acts on morphisms is defined in the same way as for d (now
utilizing the universal property of the product). The functor ⋔ is a power (or
cotensor) of D over Set: This means that for each S P Set there are natural
isomorphisms

SetpS,Dpd1, d2qq – Dpd1, S ⋔ d2q

The decomposition theorem for ends then reads

F –

ż

aPA

よAa ⋔ Fa

for a functor F : A Ñ D.

Theorem 2.22 is sometimes also called the density theorem. This name is very
much suiting since, if we are given a presheaf F P SetA

op
, then

F –

ż aPA

Ap´, aq d Fa – colim
pa,xqPelpFq

Ap´, aq

which tells us that the collection of representable presheaves in SetA
op

is dense
in the category of presheaves SetA

op
(any presheaf is a colimit of representable

presheaves). This will be explained (and proved) in more detail in Corollary 3.9.

Example 2.25. Recall that a simplicial set X is just a presheaf ∆op Ñ Set on the
simplex category. Thus Theorem 2.22 implies

X –

rnsP∆
ż

∆n dXn – colim
elX

∆n

Remark 2.26. Taking the coend of a functor in DAop
ˆA may very well be interpreted

as a functor
A
ż

: DAop
ˆA Ñ D

The functor
A
ş

then fits into an adjunction

DAop
ˆA D

A
ş

Ap´,´q⋔´

%
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where Ap´,´q ⋔ ´ is the functor which takes an object d P D to the functor
ź

W p´,´q

d P DAˆAop

In order to see that this adjunction holds, we first note that the bifunctor Ap´,´q

is equal to the coend
aPAop

ż

よpa, aq

where よ : A ˆ Aop Ñ SetpAˆAop
q
op

is the Yoneda embedding. Indeed, a quick
application of the coend calculus yields

´

a
ż

よpa, aq

¯

pa1, a2q “

a
ż

Apa1, aq ˆ Apa, a2q

– Apa1, a2q

by the fact that d “ ˆ in Set and Theorem 2.22. In order to then get the adjunction

Dp

A
ż

F, dq – SetA
op

ˆA
pW,DpF, dqq

we calculate

Dp

A
ż

F, dq –

ż

a

DpFpa, aq, dq

–

ż

a

SetA
op

ˆA
pよpa, aq,DpF, dqq

– SetA
op

ˆA
pAp´,´q,DpF, dqq

–

ż

a,a1

SetpApa, a1q,DpFpa, a1q, dqq

–

ż

a,a1

DpFpa, a1q,Apa, a1q ⋔ dq

– DAop
ˆApF,Ap´,´q ⋔ dq

2.3. Nerve Realization Adjunction. This chapter is mostly based on the Nlab
article nerve and realization, [28] and [33].

Definition 2.27. Let F : C Ñ D be a functor, for C a small category. Then the
nerve functor associated to F is the functor

NF : D Ñ SetC
op
, d ÞÑ DpF, dq

It turns out that the previous construction is of particular interest to us: The
functor NF will have a left adjoint | ´ |F in most practical cases, and the corre-
sponding adjunction will be used to define several important future notions. The
question now is what kind of assumptions we have to impose on the ingredients
F,C and D so that NF indeed admits a left adjoin. It turns out that a sufficient
condition is to assume cocompleteness of D:

https://ncatlab.org/nlab/show/nerve+and+realization
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Theorem 2.28. Let C be a small category and let D be a cocomplete category. If
F : C Ñ D is a functor, then the induced nerve functor NF : D Ñ SetC

op
has a left

adjoint

| ´ |F : SetC
op

D : NF

%

given on objects U P SetC
op

by the coend

|U|F :“

cPC
ż

Ucd Fc

In particular, | ´ |F is the unique cocontinuous extension of F, that is,

|よc|F – Fc

for all objects c P C.

Proof of Theorem 2.28. By Theorem 2.22

|よc|F “

rcPC
ż

Cprc, cq d Frc – Fc

For the adjoint correspondence we calculate:

Dp

cPC
ż

Ucd Fc, dq –

ż

cPC

DpUcd Fc, dq –

ż

cPC

SetpUc,DpFc, dqq – SetC
op

pU,NFdq

□

Remark 2.29. Some remarks for generalizations and important notions are in order:
‚ The functor | ´ |F acts on morphisms pU Ñ Hq in SetC

op
by means of the

universal property of the coend.
‚ | ´ |F is the left Kan extension of F along the Yoneda embedding よ:

C D

SetC
op

F

よ |´|F

This will be explained, in detail, later in section 3.
‚ There is a dual Theorem to Theorem 2.28: Let D be a complete category

and consider a functor F : C Ñ D. From this we may define the dual nerve
(or co-nerve)

pNF : D
op Ñ SetC, d ÞÑ Dpd,Fq

The functor pNF then fits into an adjunction

Cop SetS
pNF

´
F

%

where the left adjoint ´F is given on objects U P SetC by the end

UF :“

ż

cPC

Uc ⋔ Fc

In order to see that this is truly a left adjoint to pNF we calculate:

DoppUF, dq – Dpd,UFq
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–

ż

cPC

Dpd,Uc ⋔ Fcq

–

ż

cPC

SetpUc,Dpd,Fcqq

– SetCpU, pNFdq

Moreover, ´F is the unique continuous extension of F, that is,

ふc
F

–

ż

rcPC

Cpc,rcq ⋔ Frc – Fc

Example 2.30 (Geometric realization). Recall from the very beginning of section
2 that there is a functor | ´ | : ∆ Ñ Top which sends rns to the standard topological
n-simplex

|∆n| “

!

pt0, . . . , tnq P Rn`1 | ti ⩾ 0,
ÿ

i

ti “ 1
)

This induces a functor

Π⩽8 :“ N|´| : Top Ñ sSet, Π⩽8Y :“ Topp| ´ |, Y q P sSet

By Theorem 2.28 we therefore obtain a left adjoint for the total singular complex
Π⩽8 given by

| ´ | : sSet Ñ Top, |X| “

rnsP∆
ż

Xn d |∆n|

Unravelling the definition of the coend, |X| is isomorphic to the quotient space

|X| “

´

ž

n⩾0

Xn ˆ |∆n|

¯M

„

where „ is the equivalence relation generated by pairs
´

Xf pxq, y
¯

„

´

x, |f |pyq

¯

, pf, x, yq P ∆n
m ˆXn ˆ |∆n|

Since ∆ has a generating set of morphisms, the above equivalence relation can also
be merely stated in terms of face and degeneracy maps. Thus, face and degeneracy
maps already provide all the necessary information for us to know how to glue.

Example 2.31. Let C be a small category and let

ι : ∆ Ñ Cat

be the inclusion functor of the simplex category into small categories, i.e., the object
rns is mapped to the category ιrns “ t0 Ñ 1 Ñ . . . Ñ nu, which has n ` 1 objects
and precisely n non-identity morphisms. An order preserving map f : rns Ñ rms is
mapped to the corresponding functor ιf : ιrns Ñ ιrms induced from f . The nerve
of the category C is defined to be the simplicial set

NC :“ NιC : ∆op Ñ Set, rns ÞÑ Catpιrns,Cq

More concretely, if C is a category with C0,C1 the corresponding sets of objects
and morphisms respectively, then NC is the simplicial set with simplices:

NC0 “ C0

NC1 “ C1

NC2 “ tpairs of composable morphisms in Cu “ C1 ˆC0
C1

...
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NCn “ tstrings of n-composable morphisms in Cu “ C1 ˆC0
. . .ˆC0

C1

This leads to the so-called nerve functor N : Cat Ñ sSet (NC is called the nerve
of the category C). Its left adjoint is called first truncation and is given again by
means of Theorem 2.28:

h : sSet Ñ Cat, X ÞÑ

rnsP∆
ż

Xn d ιrns

The functor h assigns to any simplicial set its corresponding homotopy category hX.
This description of h is fine, if we just want to know about the existence of the left
adjoint. However, the coend formula above does not really offer insights as to what
the category hX is really all about. Hence we shall also present a different, more
explicit construction of hX: We start off by defining the set of objects of hX to
be X0. The set of morphisms for hX is freely generated from X1 subject to some
relations given by elements in X2 as follows: The degeneracy map s0 : X0 Ñ X1

picks out an identity morphism for every object x P X0, that is, 1x :“ s0pxq P X1

for all x P X0. The face maps d1, d0 : X1 Ñ X0 assign domain and codomain to
arrows f P X1, that is, domf :“ d1pfq and codf :“ d0pfq. To then obtain hX,
we consider the free graph on X0 generated by the arrows X1 and then impose the
relation h “ gf if there exists a 2-simplex σ P X2 such that d2σ “ f, d0σ “ g and
d1σ “ h. Representing this graphically we obtain

1

0 2
h

f g
σ

Composition in hX is then associative (it is a free graph after all). Unitality is
established as follows: For f P X1 we have to verify that there are 2-simplices
σ, σ1 P X2 so that

codf

domf codf

domf

f

f 1codf

1domf f

σ

σ1

Verifying this e.g. for the upper triangle goes as follows: Define σ :“ s1pfq. Then
d2s1pfq “ Xs1d2pfq “ f and d1s1pfq “ Xs1d1pfq “ f since s1d1 “ s1d2 “ id. In
particular,

d0s1pfq “ Xs1d0pfq

“ Xd0s0pfq

“ s0pd0pfqq

“ s0pcodfq

“ 1codf

This shows that hX is indeed a category. For morphisms X Ñ Y in sSet we realize
that naturality gives rise to a functor hX Ñ hY and this is functorial. It remains
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to verify that h is a left adjoint for N. However, we really only have to verify this
for representable simplicial sets ∆n, that is, we have to show

Catph∆n,Cq – sSetp∆n,NCq

However, by the Yoneda Lemma the RHS is simply NCn ,i.e., the set of chains of
n composable morphisms. Looking at the LHS we immediately realize that h∆n

is isomorphic to the category ιrns, from which the adjunction follows. Since left
adjoints are unique up to natural isomorphism, this verifies that both constructions
for h agree up to isomorphism.

Example 2.32. We construct a functor sd : ∆ Ñ sSet. In order to do so, we need
some preliminary notions:

‚ Let Posetprnsq denote the poset of nonempty subsets of the ordinal rns,
ordered by inclusion.

‚ For a morphism f : rns Ñ rms in ∆ we get a poset map

f‹ : Posetprnsq Ñ Posetp∆mq, f‹pMq :“ fpMq

‚ This defines the poset functor Poset : ∆ Ñ Poset, where Poset denotes
the category of posets.

By means of the poset functor and the nerve functor N from Example 2.31 we may
define sd by

sd :“ N ˝ Poset : ∆ Ñ sSet, sdp∆nqm “ Catprms,Posetprnsqq

Applying the functor sd to ∆1 and ∆2 and looking at the respective 1-simplices
yields the following picture:

sdp∆1q1 t0u t0, 1u t1u

t1u

sdp∆2q1 t0, 1u t1, 2u

t0, 1, 2u

t0u t0, 2u t2u

From the preceding two diagrams it is not very surprising that the geometric re-
alization |sd∆n| is exactly the barycentric subdivision of |∆n|. Having defined the
functor sd, we may consider the corresponding nerve functor

Ex :“ Nsd : sSet Ñ sSet, X ÞÑ sSetpsd, Xq

By Theorem 2.28 we get a left adjoint to Ex, the unique cocontinuous extension
sd : sSet Ñ sSet given by

sdX “

rnsP∆
ż

Xn d sd∆n

Example 2.33. Theorem 2.28 also proves that sSet is cartesian closed, i.e., for
every simplicial set Y the functor ´ ˆ Y : sSet Ñ sSet has a right adjoint. This
right adjoint is referred to as the internal hom (this concept will be explained in
section 4.2 in detail). In fact, this is true for all categories of set-valued presheaves
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endowed with the induced cartesian structure. Indeed, fix a simplicial set Y and
let F : ∆ Ñ sSet be the functor

rns ÞÑ ∆n ˆ Y

f ÞÑよ∆pfq ˆ 1Y

The corresponding nerve to F is then given by NF “ sSetpよ∆ ˆ Y,´q. We define
the internal hom as Y p´q :“ NF “ sSetpよ∆ ˆ Y,´q. It may then be checked that
| ´ |F “ ´ ˆ Y and therefore, by Theorem 2.28, we obtain the desired adjunction.

Example 2.34. Denote by ∆⩽n the full subcategory of ∆ with objects r0s, . . . , rns.
The inclusion functor ∆⩽n

i
ãÑ ∆ can be viewed as a functor skn : ∆⩽n ãÑ sSet by

means of the Yoneda Lemma, and this functor induces the truncation functor

trn : sSet Ñ sSet⩽n :“ Set∆
op
⩽n

X ÞÑ sSetpskn, Xq – X ˝ i

By Theorem 2.28 trn has a left adjoint skn : sSet⩽n Ñ sSet, called the n-skeleton,
given on objects X P sSet⩽n by

sknX “

rksP∆⩽n
ż

Xk d sknrks

We may even extend the domain of skn further by precomposing with trn:

skn :“ skn ˝ trn : sSet Ñ sSet

Example 2.35. Recall that a groupoid is a category for which all hom-sets only
contain isomorphisms. The category of groupoids Grpd is the full subcategory in
Cat which has as objects the collection of groupoids. It can be shown that Grpd is
cocomplete. Therefore one may apply Theorem 2.28 to the functor Ø : ∆ Ñ Grpd
which takes rns and maps it to the groupoid nØ :“ t0 – 1 – . . . – nu. The
fundamental groupoid functor hØ : sSet Ñ Grpd is then defined as the realization
| ´ |Ø obtained by means of Theorem 2.28. More concretely, for all simplicial sets
X we have

hØX “

rnsP∆
ż

Xn d nØ

An explicit construction is analogous to the one given in Example 2.31 with the
sole difference of adding all the necessary inverses. If X is a topological space and
x P X is a point, then we may first consider the total singular complex Π⩽8X “

Topp| ´ |, Xq P sSet. Applying the fundamental groupoid functor hØ yields a
groupoid hØpΠ⩽8Xq whose objects are given by the points in X. Thus we may
consider the hom-set

π1pX,xq :“ hØpΠ⩽8Xqpx, xq

which exactly recovers the fundamental group of a topological space X at the point
x P X.

2.4. Homotopy Theory. The following is based on [28].

When we think of homotopy theory, we think of topological spaces and contin-
uous maps between these, along with the essential ingredient of the unit interval
I “ r0, 1s. In fact, recalling the definitions, if f and g are continuous maps with the
same domain and codomain (morphisms in the category Top), then a homotopy
between f and g is a continuous map

h : r0, 1s ˆ domf ÝÑ codf
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such that h|t0uˆdomf ” f and h|t1uˆdomf ” g. A continuous map f is then said to
be a homotopy equivalence, if f has an inverse up to homotopy, i.e., there is some
composable morphism f 1 such that f ˝f 1 and f 1 ˝f are homotopic to the respective
identities. The category of topological spaces is not the only category that gives
rise to a homotopy theory, as the name of this section might have already implied.
In this scheme of things, the role played by the standard 1-simplex ∆1 in sSet will
be analogous to the role played by the interval r0, 1s – |∆1| in Top (concerning the
definition of homotopies).

Definition 2.36. Let f, g be morphisms in sSet with the same domain and codomain.
‚ A simplicial homotopy between f and g is a simplicial map h : ∆1 ˆ

domf Ñ codf such that we have a commutative diagram

∆0 ˆ domf ∆1 ˆ domf ∆0 ˆ domf

domf codf domf

––

よ∆pd1qˆ1domf よ∆pd0qˆ1domf

fg

h

‚ A simplicial homotopy equivalence is a simplicial map f for which there
exists a (composable) simplicial map f 1 such that f 1 ˝ f and f ˝ f 1 are
homotopic to the respective identities.

Therefore, doing homotopy theory is not something we can exclusively do in the
category of topological spaces, but the intrinsic structure of sSet also allows for
such a theory to be developed. In fact, many categories give rise to certain kinds of
homotopy theories. These special kinds of categories, be it homotopical categories
or model categories etc., will be covered in detail in Chapter 5.

Remark 2.37. Equivalently, a simplicial homotopy between f, g : X Ñ Y is a map
h : X Ñ Y ∆1

such that

Y d
1

h “ f, Y d
0

h “ g

where Y d
j

are induced from the two maps dj : r0s Ñ r1s and the definition of the
internal hom

Y ∆1

:“ sSetpよˆ ∆1, Y q P sSet, rns ÞÑ sSetp∆n ˆ ∆1, Y q

See also Example 2.33 and Chapter 4.2 for more details.

Proposition 2.38. The singular complex functor Π⩽8 : Top Ñ sSet, defined in
Example 2.30, maps continuous homotopies to simplicial homotopies. In particular,
continuous homotopy equivalences are mapped to simplicial homotopy equivalences.

Proof. Let h be a continuous map r0, 1s ˆ X ÝÑ Y . Since Π⩽8 is a right adjoint,
it preserves limits and therefore

Π⩽8pr0, 1s ˆXq – Π⩽8pr0, 1sq ˆ Π⩽8pXq

We may thus write Π⩽8phq as

Π⩽8phq : Π⩽8pr0, 1sq ˆ Π⩽8pXq Ñ Π⩽8pY q

Taking the adjunct of the canonical homeomorphism |∆1| Ñ r0, 1s yields a simpli-
cial map ξ : ∆1 Ñ Π⩽8pr0, 1sq. By precomposing with ξ ˆ 1Π⩽8pXq we obtain a
simplicial map

∆1 ˆ Π⩽8pXq ÝÑ Π⩽8pY q

which is the desired simplicial homotopy. □
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2.4.1. Kan Complexes. Recall the definition of the i-th horn Λni of the standard
n-simplex from Example 2.9.

Definition 2.39. A simplicial set X P sSet is called a Kan complex if it satisfies
the following horn filling conditions: For all 0 ⩽ i ⩽ n, n ą 0, every map

Λni
f

ÝÑ X

can be extended (this may be non-unique) to a commutative diagram

Λni X

∆n

rf

f

Remark 2.40. Equivalently, the above horn filling conditions boil down to the state-
ment that the corresponding inclusion maps Λni ãÑ ∆n induce surjections

sSetp∆n, Xq ÝÑ sSetpΛni , Xq

For later use we shall also define the more general notion of a Kan fibration:

Definition 2.41. A simplicial map f P sSet is said to be a Kan fibration, if it has
the right lifting property with respect to all horn inclusions, i.e., for each 1 ⩽ k ⩽ n
the diagram

Λnk domf

∆n codf

fDd

allows for a lift d : ∆n Ñ domf .

Remark 2.42. The notion of a Kan fibration is more general than that of a Kan
complex. Indeed, X is a Kan complex if and only if the unique map X Ñ ∆0 is a
Kan fibration.

It turns out that any topological space may be viewed as a Kan complex. More
precisely:

Theorem 2.43. The simplicial set Π⩽8pY q is a Kan complex for all Y P Top.

Proof. Fix 0 ⩽ i ⩽ n and consider the inclusion

|Λni | |∆n|
r

i

which admits a retract r : |∆n| Ñ |Λni |, i.e., r ˝ i “ id|Λni |. Explicitly, a retract
r : |∆n| Ñ |Λni | may be given by

rpt0, . . . , tnq :“ pt0 ´ c, . . . , ti´1 ´ c, ti ` nc, ti`1 ´ c, . . . , tn ´ cq

where c :“ minpt0, . . . , tnq and |Λni | is given by
!

pt0, . . . , tnq | tj “ 0 for some j ‰ i
)

Ă |∆n|

Using the adjunction | ´ | % Π⩽8, the extension problem

Λni Π⩽8X

∆n

f
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is then equivalent to the extension problem

|Λni | X

|∆n|

|f |

But this problem is solved by putting the dashed arrow to be |f | ˝ r. □

Remark 2.44. Theorem 2.43 tells us that any topological space can be seen as a Kan
complex. Analogously, any Kan complex gives rise to a topological space (which
is simply given by taking the geometric realization). The adjunction | ´ | % Π⩽8

will then give rise to some sort of homotopical equivalence (Quillen equivalence).
Details for this will be given in Chapter 5.

Homotopy groups (of any order) of a topological space are of course incredibly
important in the study of homotopy theory for topological spaces. In the case of
Kan complexes such homotopy groups also make sense. Indeed, we roughly sketch
how such homotopy groups are defined: Let X be a Kan complex and pick a vertex
v P X0. The 0-th simplicial homotopy group π0X of X is defined to be the set of
homotopy classes of vertices of X, i.e.,

π0X :“
!

rxs | x P X0

)

where rxs denotes the set
!

x1 P X0 | x1 „ x
)

with „ being the smallest equivalence relation on X0 such that x „ y if there exists
f P X1 such that d1pfq “ x and d0pfq “ y. In other words, π0X is the coequalizer
of

X1 X0

d1

d0

For n ⩾ 1, one defines πnpX, vq to be the set of homotopy classes of maps α : ∆n Ñ

X relative boundary B∆n. In other words, πnpX, vq is the set of equivalence classes
rαsrel where α : ∆n Ñ X is a simplicial map such that

B∆n ∆0

∆n X

x

α

commutes, and where rαsrel “ rβsrel if and only if there exists a homotopy h : ∆1 ˆ

∆n Ñ X between α and β which respects the boundary condition:

∆1 ˆ B∆n ∆0

∆1 ˆ ∆n X
h

x

Finally, one verifies that for n ⩾ 1 the sets πnpX,xq can be endowed with a group
structure which is induced by the horn filling property of Kan complexes (see [26]
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or [15] for example). In fact, one can then also prove that we have a bijective
correspondence of sets

π0X – π0|X|

and, for all n ⩾ 1, group isomorphisms

πnpX, vq – πnp|X|, vq

i.e., the simplicial homotopy groups agree with the (topological) homotopy groups
of the associated topological space obtained by applying geometric realization to
X.

In analogy to topological spaces, we have the following definition:

Definition 2.45. Let f : X Ñ Y be a simplicial map of Kan complexes. Then f
is called a simplicial weak equivalence if f induces group isomorphisms

πnpX,xq πnpY, fpxqq
f‹

for all n ⩾ 1 and vertices x P X0, and a bijection of sets

π0pX,xq π0pY, fpxqq
f‹

Theorem 2.46 (Whitehead V1). Let f : X Ñ Y be a simplicial map between Kan
complexes. Then f is a simplicial weak equivalence if and only if f is a simplicial
homotopy equivalence.

Proof. See [28] Exercise 39.11. □

Theorem 2.47 (Whitehead V2). Let f : X Ñ Y be simplicial map between Kan
complexes. Then f is a simplicial homotopy equivalence if and only if all commu-
tative squares

B∆n X

∆n Y

fd

admit a lift d : ∆n Ñ X such that the upper triangle commutes and the lower
triangle commutes up to a homotopy relative boundary, i.e., there exists a homotopy
h : ∆1 ˆ ∆n Ñ Y from f ˝ d to the bottom map so that h|∆1ˆB∆n factors as

B∆n

∆1 ˆ B∆n Y

πB∆n

h|∆1ˆB∆n

where πB∆n denotes the corresponding projection.

Proof. See [28] Proposition 39.10. □

Weak equivalences can also be understood by means of a specific functor. In order
to define this functor, we need some preliminary notions. We start off by defining
the last vertex map: Recall, from Example 2.32, the functor Poset : ∆ Ñ Poset
which takes rns and maps it onto the poset of the ordinal rns denoted by Posetprnsq.
Also, recall that any ordinal rns can be interpreted as a category itself. The map
max: Posetprnsq Ñ rns is given by

rv0, . . . , vks ÞÑ vk
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where rv0, . . . , vks P Posetprnsq is an ordered tuple with vj ⩽ vj`1 for all j. The
last vertex map λ∆n : sd∆n Ñ ∆n is then defined as Nmax. This map then gives
rise to a simplicial map X Ñ ExX for any simplicial set X (Ex was introduced in
Example 2.32). Indeed, fix X P sSet. For any n-simplex σ : ∆n Ñ X, let ρXpσq

denote the composite

NPosetprnsq “ sd∆n Nrns “ ∆n X
λ∆n σ

The map σ ÞÑ ρXpσq then yields a natural transformation X Ñ ExX, where
naturality follows from commutativity of

Posetprnsq rns

Posetp∆mq rms

f‹

max

max

f

The simplicial maps ρX then assemble into a natural transformation idsSet Ñ Ex,
i.e., the diagram

domf Expdomfq

codf Expcodfqρcodf

f

ρdomf

Exf

commutes for all morphisms f in sSet.

Definition 2.48. The functor

Ex8 : sSet ÝÑ sSet

which sends X P sSet to the colimit of the diagram

X ExX Ex2X Ex3 . . .
ρX ρExX ρEx2X

is referred to as Kan’s Ex8-functor. The universal cocone that comes associated
with the colimit Ex8X then gives rise to a map ρ8

X : X Ñ Ex8X. The construction
X ÞÑ ρ8

X determines a natural transformation 1sSet Ñ Ex8.

The following theorem is of substantial importance to us:

Theorem 2.49. A simplicial map f between Kan complexes is a simplicial weak
equivalence if and only if Ex8f is a simplicial homotopy equivalence.

Proof. See [26] Corollary 3.3.6.8. □

This motivates the following definition:

Definition 2.50. A simplicial map f (not necessarily between Kan complexes) is
called a simplicial weak equivalence if and only if Ex8f is a simplicial homotopy
equivalence.

Theorem 2.51. The functor Ex8 : sSet Ñ sSet and the natural transformation
ρ8 : 1sSet Ñ Ex8 enjoy the following properties:

‚ For every simplicial set X P sSet, the object Ex8X is a Kan complex.
‚ For every simplicial set X P sSet, the map ρ8

X : X Ñ Ex8X is a weak
homotopy equivalence.

‚ The functor Ex8 preserves weak equivalences, (trivial) fibrations, (trivial)
cofibrations, and simplicial homotopy equivalences.
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‚ For every Kan fibration of simplicial sets f P sSet, the induced morphism
Ex8 : Ex8

pdomfq Ñ Ex8
pcodfq is a Kan fibration.

‚ The functor Ex8 : sSet Ñ sSet commutes with finite limits.

Proof. For details see [26] or [28]. □
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3. Interlude on Kan Extensions

The Road goes ever on and on
Down from the door where it
began. Now far ahead the Road
has gone, And I must follow, if I
can, Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands
meet.

J.R.R. Tolkien (The Fellowship of
the Ring)

This chapter is based on the corresponding chapters in [23],[34] and [35].

3.1. What even is a Kan Extension? Let us assume we have a diagram of
functors

C E

D

U

F

and let us view a category as the mathematical embodiment of a mathematical
theory itself. A functor is then viewed as a translation of one mathematical theory
to the language of another mathematical theory. Put differently, the functors F
and U both model the mathematical theories C inside E and D, respectively. Now
the question is, if it is possible to model all of the theory D inside E by using the
information of F and U in such a way so as to construct a functor that nicely blends
in with all the data given? More concretely, we search for a functor D Ñ E that
should deserve to be called extension of F along U. There are two canonical ways to
define such a notion: The existence of such an extension functor E : D Ñ E should
either arrange for a comparison natural transformation EU Ñ F or a comparison
natural transformation F Ñ EU:

C E C E

D D

U

F F

U

This motivates the following:

Definition 3.1. Let F : C Ñ E,U : C Ñ D be functors between given categories.
‚ A left Kan extension of F along U is a functor LanUF : D Ñ E together

with a natural transformation ζ : F Ñ pLanUFqU which collect into a uni-
versal pair pLanUF, ζq for diagrams of the form

C E

D

U

F

Universality here means that for any other such pair

pL : D Ñ E, γ : F Ñ LUq
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γ factors uniquely through ζ: There exists a unique ξ : LanUF Ñ L such
that

F LU

pLanUFqU

ζ

γ

ξU

commutes.
‚ A right Kan extension of F along U is a functor RanUF : D Ñ E together

with a natural transformation ε : pRanUFqU Ñ F which collect into a uni-
versal pair pRanUF, εq for diagrams of the form

C E

D

U

F

Universality here means that for any other such pair

pL : D Ñ E, δ : LU Ñ Fq

δ factors uniquely through ε: There exists a unique ξ : L Ñ RanUF such
that

LU F

pLanUFqU

δ

ξU ε

commutes.

Passing to a higher set-theoretical universe SET, we can think of a left Kan
extension of F : C Ñ E along U : C Ñ D as a representation for the functor

ECpF,U‹q : ED Ñ SET, L ÞÑ ECpF,LUq

where U‹ : ED Ñ EC denotes the precomposition functor ´ ˝ U. By the Yoneda
Lemma any pair

´

L : D Ñ E, γ P ECpF,LUq – HompEDpL,´q,ECpF,U‹q

¯

as in the definition above, defines a natural transformation

EDpL,´q
γ

ÝÑ ECpF,U‹q

The universal property satisfied by the left Kan extension pLanUF, ζq is then equiv-
alent to the associated map

EDpLanUF,´q
ζ

ÝÑ ECpF,U‹q

being a natural isomorphism, i.e., pLanUF, ζq represents the functor ECpF,U‹q.

Proposition 3.2 ([35]). If, for fixed U : C Ñ D and E, the left and right Kan
extensions of any functor F : C Ñ E along U exist, then these define left and right
adjoints to the pre-composition functor U‹ : ED Ñ EC: We have an adjoint corre-
spondence

EC ED
U‹

RanU

LanU

%
%

and natural isomorphisms:

EDpLanUF,Lq – ECpF,LUq, ECpLU,Fq – EDpL,RanUFq
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3.2. Pointwise and Absolute Kan Extensions. The questions that should pop
into one’s mind right now are the following:

‚ Where do Kan extensions pop up in our quest to understand quantum
field theory?

‚ How do we know certain Kan extensions will exist, and are there concrete
formulas for these?

Since (higher) category theory is the language we use in order to describe quantum
field theory, the first question is self-evident as essentially any notion in category
theory may be seen to be a Kan extension. The second question also has an
immediate answer (Proposition 3.5). First let us do some preparatory work and
give some definitions:

Definition 3.3. Let
D C E

U F

be a pair of functors.
‚ A left Kan extension LanUF along U of F is pointwise if it is preserved by

all representable functors Ep´, eq for all e P E:

C E Set C E Set

“

D D

U

F Ep´,eq

LanUEpF,eq

F Ep´,eq

U
LanUF

In other words, if pLanUF, ζ : F Ñ pLanUFqFq is a left Kan extension, then

pEpLanUF, eq, Epζ, eqq

is the left Kan extension of EpF, eq along U.
‚ A right Kan extension RanUF along U of F is pointwise if it is preserved

by all representable functors Epe,´q for all e P E:

C E Set C E Set

“

D D

U

F Epe,´q

RanUEpF,eq

F Epe,´q

U
RanUF

In other words, if pRanUF, ζ : pRanUFqF Ñ Fq is a right Kan extension,
then

pEpe,RanUFq, Epe, ζqq

is the right Kan extension of Epe,Fq along U for all e P E.
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‚ A left/right Kan extension is said to be absolute if it is preserved by any
functor L : E Ñ O out of the codomain of F:

C E O C E O

“

D D

C E O C E O

“

D D

U

F L

LanUpLFq

F L

U
LanUF

U

F L

RanUF
U

F L

RanUpLFq

Following the notation of [35], the category d Ó U for a functor U : C Ñ D and
d P D is defined to be the category of elements of the functor Dpd,Uq, that is,

d Ó U :“ elpDpd,Uqq

We recall that objects in this category are given by pairs pc P C, f P Dpd,Ucqq and
a morphism

pc, fq
h

ÝÑ prc, rfq

boils down to a morphism h : c Ñ rc such that

Uc Urc

d

f

Uh

rf

commutes (see also Remark 2.11).

Lemma 3.4. Given functors F : C Ñ E and U : C Ñ D with D and E locally small
and an object d P D, there is a natural isomorphism

Conepe,FΠdÓUq – SetCpDpd,Uq,Epe,Fqq

where ΠdÓU : d Ó U Ñ C is the associated forgetful functor.

Proof. The set of cones Conepe,FΠdÓUq is equivalently given as the set of natural
transformations from the constant diagram functor on e to FΠdÓU:

Conepe,FΠdÓUq “ EdÓUpconstpeq,FΠdÓUq

Any such cone is a family pζcf : Dpd,Ucq Ñ Epe,Fcqqpc,fq such that

Uc e

Urc ùñ Frc

d Fc

f

Uh

rf

ζcf

Fh

ζ rc
rf
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that is, if the LHS-triangle commutes then so does the RHS-triangle. However,
this determines a natural family of functions ζc : Dpd,Ucq Ñ Epe,Fcq so that for
all h : c Ñ rc we have a commutative diagram

Dpd,Ucq Epe,Fcq

Dpd,Urcq Epe,Frcq
ζ rc

pUhq‹ pFhq‹

ζc

□

Proposition 3.5. Consider a pair of functors

D C E
U F

such that D and E are locally small.
(i) A right Kan extension of F : C Ñ E along U : C Ñ D is pointwise if and

only if it can be computed by

RanUFpdq – lim
dÓU

FΠdÓU

in which case, in particular, this limit exists.
(ii) A left Kan extension of F : C Ñ E along U : C Ñ D is pointwise if and

only if it can be computed by

LanUFpdq – colim
UÓd

FΠUÓd

in which case, in particular, this colimit exists.
(iii) If RanUF resp. LanUF is pointwise and E is cotensored resp. tensored

over Set, then we have natural isomorphisms (natural in F and U):

LanUF –

cPC
ż

ふpUcq d Fc, RanUF –

ż

cPC

よpUcq ⋔ Fc

where ふ : Dop Ñ SetD and よ : D Ñ SetD
op

denote the contravariant and
covariant Yoneda embedding, respectively.

Proof. If RanUF may be written by the above limit formula, then it is pointwise by
preservation of limits of the hom-functor (in the covariant argument). Conversely,
if RanUF is pointwise, then Epe,RanUFq is the right Kan extension of Epe,Fq along
U for all e P E. The Yoneda Lemma combined with the defining universal property
of the Kan extension yield

Epe,RanUFpdqq – SetDpDpd,´q,Epe,RanUFqq – SetCpDpd,Uq,Epe,Fqq

– Conepe,FΠdÓUq

where the last isomorphism follows from Lemma 3.4. This proves the first state-
ment. In order for

ż

cPC

Dpd,Ucq ⋔ Fc

to exist so that the end-formula for RanUF makes sense, we have to verify that the
wedge functor induced by Dpd,Uq ⋔ F, defined in equation (2), is represented by
RanUFpdq. This, however, means that we only need to prove that the right Kan
extension Epe,RanUFpdqq is given by

!

wedges ‹ 9ÑDpd,Uq ⋔Epe,Fq

)

– Set
´

‹,

ż

cPC

Epe,Dpd,Ucq ⋔ Fcq
¯
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–

ż

cPC

Epe,Dpd,Ucq ⋔ Fcq

–

ż

cPC

SetpDpd,Ucq,Epe,Fcqq

– SetCpDpd,Uq,Epe,Fqq

The remaining claims follow by duality.
□

Remark 3.6. If we already know that the (co)end-formulas for left resp. right Kan
extensions make sense, we may immediately calculate that the formulas above hold
true: For example, if E is cocomplete, let L P ED be any test functor. Then we
have the following chain of natural isomorphisms (natural in F and U):

ED
´

cPC
ż

ふDpUcq d Fc, L
¯

–

ż

dPD

E
´

cPC
ż

DpUc, dq d Fc, Ld
¯

–

ż

dPD

ż

cPC

EpDpUc, dq d Fc, Ldq

–

ż

dPD

ż

cPC

SetpDpUc, dq, EpFc,Ldqq

–

ż

cPC

ż

dPD

SetpDpUc, dq, EpFc,Ldqq

–

ż

cPC

SetDpふDpUcq,EpFc,Lqq

–

ż

cPC

EpFc, pLUqcq

– ECpF,U‹Lq

Example 3.7. Let us consider the unique functor

C ‹
!

where ‹ denotes the terminal category. If the category E allows for the existence
of the left adjoint Lan! % !‹ : EC Ñ E‹ – E (e.g. E is cocomplete), then we get
isomorphisms

ECpF,U!q – E‹pLan!F,Uq

where a functor U : ‹ Ñ E may be identified with just an object e P E, and the
composition U! is then nothing else than the constant diagram functor constpeq at
e. Therefore, the left Kan extension Lan! satisfies

ECpF, constpeqq – EpLan!F, eq

which proves colim
C

“ Lan!. Analogously, if E is complete, we obtain lim
C

“ Ran!.
The full adjunction

CD Cconst

lim“Ran!

colim“Lan!

%
%

will be quite important to us in later chapters.
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Example 3.8. Recall Theorem 2.28: Let D be cocomplete. For a functor F : C Ñ

D we asked the question when there will exist a left adjoint for the nerve NF of F.
The left Kan extension of F along the Yoneda embeddingよ : C Ñ SetC

op
will then

give rise to the realization functor | ´ |F:

C C

SetC
op

よ

F

|´|F:“LanよF

Indeed, by Proposition 3.5 we have

LanよFpUq “

cPC
ż

SetC
op

pよc,Uq d Fc –

cPC
ż

Ucd Fc

for any U P SetC
op

. This exactly retrieves the formula from Theorem 2.28. There-
fore,

LanよF : SetC
op

C : NF

%

Corollary 3.9 (Density). For any small category C, the identity functor defines
the left Kan extension of the Yoneda embedding よ : C Ñ SetC

op
along itself:

C SetC
op

SetC
op

よ

よ

Lanよよ–1

In particular,

LanよよpFq – colim
´

elF Π
Ñ C

よC
Ñ SetC

op
¯

– F

Proof. We immediately see from the respective coend formula that Lanよよ – 1:

LanよよpFq –

cPC
ż

SetC
op

pよc,Fq dよc

–

cPC
ż

Fcdよc

Therefore,

SetC
op

pLanよよpFq,Uq –

ż

c

SetC
op

pFcdよc,Uq

–

ż

c

SetpFc,SetC
op

pよc,Uqq

–

ż

c

SetpFc,Ucq

– SetC
op

pF,Uq
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for all U P SetC
op

, which proves LanよよpFq – F. The remainder follows from
elF –よ Ó F and the formula

colim
´

よ Ó F
Π
Ñ C

よ
Ñ SetC

op
¯

– F

which is implied by Proposition 3.5. □

The nerve realization Theorem 2.28 can also be understood in terms of Kan
extensions, as we have seen in one of the previous examples. This begs the question
whether or not any adjunction may be understood by means of Kan extensions.
The answer is yes again:

Theorem 3.10. Let F : C Ñ D be a functor.
‚ The functor F has a right adjoint if and only if LanF1C exists and is

preserved by F. In particular, LanF1C is an absolute Kan extension.
‚ The functor F has a left adjoint if and only if RanF1C exists and is pre-

served by F. In particular, RanF1C is an absolute Kan extension.

Proof. Suppose first that F has a right adjoint U : D Ñ C. Then we obtain an
adjunction

CD CC
U‹

F‹

%

This follows since if η : 1C Ñ UF and ε : FU Ñ 1D are unit and counit, respectively,
then η‹ : 1CC Ñ F‹U‹ and ε‹ : U‹F‹ Ñ 1CD give rise to adjunction unit and counit
for U‹ % F‹. Now by uniqueness of adjoints, LanF – U‹. However, this implies that
U defines a left Kan extension of 1C along U. For any other functor K : C Ñ E we
have

ECpKLanFH,Lq – ECpK‹U
‹H,Lq

“ ECpU‹pKHq, Lq

– EDpKH,F‹Lq

for all H : D Ñ C and all L : C Ñ E. This shows that KLanFH – LanFpKHq

and therefore LanF1C is absolute. Conversely, assume that the left Kan extension
pLanF1C, ηq exists and is preserved by F. Using the universal property of the Kan
extension FLanF1C – LanFF we obtain a unique factorization

C D C C D

“

D D

F

F

LanF1C

F

F

D!ε
η1F

In other words, we have a commutative diagram

F F

pLanFFqF

Fη εF

proving one of the triangle identities. For the other identity, see [35]. □
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4. Hom-objects and Enriched Category Theory

My mind rebels at stagnation.
Give me problems, give me work,
give me the most abstruse
cryptogram, or the most intricate
analysis, and I am in my own
proper atmosphere. But I abhor
the dull routine of existence. I
crave for mental exaltation.

"The Sign of the Four" - Sir
Arthur Conan Doyle

Enriched category theory is a powerful generalization of traditional category
theory that allows us to work with categories enriched over other mathematical
structures, such as sets, vector spaces, or topological spaces. In traditional cate-
gory theory, a category comes with a set of morphisms for each pair of objects, but
in enriched category theory, these Hom-sets are replaced with objects from a nice
mathematical category (a cosmos). For example, a category enriched over topo-
logical spaces would have topological spaces of morphisms for each pair of objects.
The notion of enriched category allows us to study the structure of categories in a
more fine-grained way.

4.1. Review on Symmetric Monoidal Categories.

Definition 4.1. A symmetric monoidal category is a category C equipped with
the following data:

‚ A functor b : C ˆ C Ñ C, referred to as the tensor product.
‚ An object 1 P C, called the unit object.
‚ Four natural isomorphisms

α : b ˝pb ˆ 1Cq Ñ b ˝ p1C ˆ bq

λ : 1 b ´ Ñ 1C

ρ : ´ b1 Ñ 1C

β : b Ñ b ˝ τ

where τ : CˆC Ñ CˆC is the twist functor, which takes a pair of objects
pc, c1q to pc1, cq. The above isomorphisms are referred to as associator, left
unitor, right unitor and braiding in that order.

These are subject to coherence conditions, which demand that the following dia-
grams be commutative:

‚ Pentagon axiom:

pab bq b pcb dq

ppab bq b cq b d ab pbb pcb dqq

pab pbb cqq b d ab ppbb cq b dq

αabb,c,d αa,b,cbd

1abαb,c,d

αa,bbc,d

αa,b,cb1d
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‚ Triangle identity :

pab 1q b b ab p1 b bq

ab b

1abλbρab1b

αa,1,b

‚ Hexagon identity :

pab bq b c ab pbb cq pbb cq b a

pbb aq b c bb pab cq bb pcb aq

βa,bb1c

αa,b,c βa,bbc

αb,a,c 1bbβa,c

αb,c,a

‚ The symmetry condition:

βb,aβa,b “ 1abb

Example 4.2. (Symmetric) monoidal categories are abundant. We list some of
the most popular examples:

‚ Let C be any category, then the category of endomorphisms EndC :“ CC

on forms a monoidal category with the tensor product being composition
of functors.

‚ The category Set is a symmetric monoidal category with the tensor prod-
uct being the product functor ˆ.

‚ The category of K-vector spaces VectK yields a symmetric monoidal cat-
egory with the tensor product being given by the usual tensor product of
vector spaces.

‚ Consider the poset of non-negative real numbers r0,8q Ă R. Viewing this
poset as a category by means of pa ⩾ bq ðñ pDa Ñ bq, we may define
the associated tensor product to be addition of real numbers. This results
in a symmetric monoidal category pr0,8q,`, 0q with tensor unit being 0.

Definition 4.3. a symmetric monoidal functor between symmetric monoidal cat-
egories pC,b,1, λ, ρ, βq and pC1,b1,11, λ1, ρ1, β1q consists of

‚ a functor F : C Ñ C1,
‚ a natural isomorphism φ : b1 ˝pF ˆ Fq Ñ F ˝ b,
‚ an isomorphism φ1 : 1

1 Ñ F1,
such that the diagrams

Fpab bq b1 Fc Fppab bq b cq

pFab1 Fbq b1 Fc Fpab pbb cqq

Fab1 pFbb1 Fcq Fab1 Fpbb cq

α

φa,bb
11Fc

φabb,c

Fα

φa,bbc

1Fab
1φb,c

1
1 b1 Fa Fa Fab1

1
1 Fa

F1 b1 Fa Fp1 b aq Fab1 F1 Fpab 1q

Fλa

λ1
Fa

φ1b1Fa

φ1,a φa,1

1Fabφ1

ρ1
Fa

Fρa
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Fab1 Fb Fbb1 Fa

Fpab bq Fpbb aq

φb,aφa,b

βFa,Fb

Fβa,b

commute for all a, b, c P C.

Definition 4.4. Let pF, φ, φ1q and pU, ψ, ψ1q be symmetric monoidal functors
C Ñ D. A natural transformation ζ : F Ñ U is called a symmetric monoidal
transformation if the diagrams

FabD Fb UabD Ub 1D

FpabC bq UpabC bq F1C U1C

ζabDζb

φa,b

ζabCb

ψa,b

ζ1C

φ1 ψ1

commute for all a, b P C.

4.1.1. Duals.

Definition 4.5. Let C be a symmetric monoidal category.
‚ An object c P C is said to have a dual if there exists an object c: P C such

that we have an adjunction

C C
´bc

´bc:

%

‚ C is said to have duals, if every object c P C has a dual.

We realize that an adjunction ´ b c % ´ b c: as above induces corresponding
unit and counit maps

η : 1C Ñ c: b cb ´, ε : c: b cb ´ Ñ 1C

However, these natural transformations are already fully determined by the respec-
tive components η1 and ε1. Indeed, η and ε, being the corresponding unit and
counit of an adjunction, satisfy the triangle axioms:

cb ´ cb c: b cb ´ c: b ´ c: b cb c: b ´

cb ´ c: b ´

cbη

εbc

c‹
bη

εbc:

In particular, we obtain commutative diagrams

c cb c: b c c: c: b cb c:

c c:

cbη1

ε1bc

c:
bη1

ε1bc:

where we have made extensive use of the natural isomorphism ´ b 1 – 1C. From
such commutative diagrams for η1 and ε1 as above, we may recover η and ε by
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defining

ηc1 :“ η1 b 1c1 , εc1 :“ ε1 b 1c1

Example 4.6. Consider the symmetric monoidal category of K-vector spaces VectK.
It may be shown that a vector space V P VectK is dualizable if and only if V is
finite dimensional. Let us show one direction of this equivalence. Suppose V is
finite dimensional and set V : :“ VectKpV,Kq. Recall that the tensor unit of VectK
is K itself and therefore it suffices to construct appropriate linear maps

ηK : K Ñ V : b V, εK : V
: b V Ñ K

The definition for εK is canonical. For ψ P V : and v P V , we set

εKpψ b vq :“ ψpvq

and extend this map linearly to all of V : b V . For the definition of η, we fix a
(finite) basis tviu

d
i“1 for V and define

ηKp1q :“
ÿ

i

v:

i b v

where the tv:

i u denotes the corresponding dual basis. It may be shown that the
definition of ηK is independent of the specific choice of a basis. Moreover, it is not
hard to see that the two maps thus defined satisfy the triangle identities, which
shows that the full symmetric monoidal sub-category of finite dimensionsal vector
spaces vectK has all duals.

Example 4.7. Consider the symmetric monoidal category Set which has the prod-
uct as its tensor product. Note that except for the singleton ‹ P Set, no other object
S P Set (which has cardinality greater than 1) has a dual. Indeed, suppose S P Set
with |S| ą 1, has a dual S:, then

SetpAˆ S,Bq – SetpA,B ˆ S:q

In particular, for A “ ‹ a singleton, we would obtain

SetpS,Bq – Setp‹, B ˆ S:q – B ˆ S:

for all B P Set, which is impossible unless S “ S: “ ‹.

4.2. Internal Homs. This chapter is based on [38] and the corresponding Nlab-
article on internal homs.

As a motivating example let us, just briefly so, consider the category Set. For
X,Y, Z P Set we readily have the canonical natural isomorphism

SetpX ˆ Y,Zq
–

ÝÑ SetpX,SetpY,Zqq

which maps a function f : X ˆ Y Ñ Z to the induced function rf : X Ñ SetpY,Zq

which is given by rfpxq :“ fpx,´q. We note then that the category of sets is special
in that for each Y P Set the functor ´ ˆ Y has a right adjoint SetpY,´q. To spell
out a triviality concretely: One of the most unique properties of Set is that for any
X,Y P Set the Hom-set SetpX,Y q is again an object in Set. This is something we
would also like to have in an arbitrary category C, i.e., we aspire to get, for each
pair X,Y P C, a hom-object rX,Y s P C (rather than just a set) which should, in
some sense, contain the same information as the usual Hom-set CpX,Y q with the
distinction of being even richer in that it is also an object in the category itself.

https://ncatlab.org/nlab/show/internal+hom


50

Definition 4.8. Let C be a symmetric monoidal category. An internal hom in C

is a functor

r´,´s : Cop ˆ C Ñ C

such that for every object c P C we have a pair of adjoint functors

C C

cb´

rc,´s

%

If an internal hom exists in C, we call C a closed symmetric monoidal category.

Remark 4.9. We note that the concept of an internal hom generalizes the notion of
a dual.

Proposition 4.10. In a closed symmetric monoidal category C there are natural
isomorphisms

ra, rb, css – rab b, cs

Proof. Let x P C be any object. We have the following chain of natural isomor-
phisms

Cpx, rab b, csq – Cpxb pab bq, cq – Cppxb aq b b, cq

– Cpxb a, rb, csq – Cpx, ra, rb, cssq

Since x was arbitrary the claim follows from fully faithfulness of the Yoneda em-
bedding. □

Proposition 4.11. Let C be a closed symmetric monoidal category with internal
hom-bifunctor r´,´s. Then this bifunctor preserves limits in the second variable,
and sends colimits in the first variable to limits:

rc, lim
J

Fjs – lim
J

rc,Fjs, rcolim
J

Fj, cs – lim
J

rFj, cs

for any (small) functor F : J Ñ C and any object c P C.

Proof. Since rc,´s is a right adjoint we immediately obtain preservation of limits in
the covariant slot of r´,´s. For the other case, let F : J Ñ C be a small diagram,
and let a P C be fixed. Then we have the following chain of natural isomorphisms

Cpa, rcolim
J

Fj, csq – Cpab colim
J

Fj, cq – Cpcolim
J

pab Fjq, cq – lim
J

Cpab Fj, cq

where we also made use of the fact that a b ´ is a left adjoint and thus preserves
colimits. □

Closed symmetric monoidal categories are not all that rare. The main examples
we will concern ourselves with are those induced by cartesian closed categories:

Definition 4.12. A category C is cartesian closed if
‚ it has finite products (this also implies the existence of a terminal object).
‚ for each c P C, the product-functor cˆ ´ : C Ñ C admits a right adjoint

rc,´s : C Ñ C:

C C

cˆ´

rc,´s

%

For c, c1 P C the resulting object rc, c1s will be referred to as the internal
hom (or exponential) from c to c1.
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Remark 4.13. Any cartesian closed category C induces a closed symmetric monoidal
category: The tensor product is simply defined to be the product bifunctor ´ ˆ ´.
The unit object is given by the terminal object ‹ P C. Associators, left and right
unitors and the braiding are induced by the obvious natural isomorphisms.

Example 4.14. Let us list some examples of cartesian closed categories (and
thereby also of closed symmetric monoidal categories):

‚ Set is cartesian closed with internal hom rX,Y s :“ SetpX,Y q.
‚ The category of small categories Cat is cartesian closed: For A,B P Cat

the internal hom rA,Bs :“ BA is simply defined to be the corresponding
functor category. The associated natural isomorphisms read

CatpA,CBq – CatpA ˆ B,Cq – CatpB,CAq

‚ For any small category C, the category pC :“ SetC
op

is cartesian closed.
Indeed, for F,U P pC, the value of rF,Us at c P C must be defined by

rF,Uspcq – pCpよCc, rF,Usq – pCpF ˆよCc,Uq

‚ In particular, the category sSet :“ Set∆
op

is cartesian closed with internal
hom

sSet Q rX,Y s :“ sSetpX ˆよ∆, Y q

for X,Y P sSet.

Definition 4.15. For C a closed symmetric monoidal category, the underlying set
functor is the functor

p´q0 :“ Cp1,´q : C ÝÑ Set

represented by the unit object 1 P C.

Remark 4.16. Since p´q0 is given as a covariant representable functor, this functor
preserves limits.

Lemma 4.17. For any pair of objects c, c1 P C in a closed symmetric monoidal
category, the underlying set of the internal hom rc, c1s is Cpc, c1q, i.e.:

rc, c1s0 – Cpc, c1q

Proof. By definition

rc, c1s0 “ Cp1, rc, c1sq – Cp1 b c, c1q – Cpc, c1q

where the last isomorphism follows from 1 b c – c. □

4.3. Enriched Category Theory. For the following section we will follow the
exposition given in the appendix of [38].

Throughout, we shall fix a complete and cocomplete closed symmetric monoidal
category pV,b,1q to serve as the base for enrichment.

Definition 4.18. A V-enriched category or V-category C is given by
‚ a collection of objects
‚ for each pair of objects x, y P C an hom-object Cpx, yq P V

‚ for each x P C a specified identity element encoded by a map 1x : 1 Ñ

Cpx, xq, and for each x, y, z P C a specified composition map ˝ : Cpy, zq b
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Cpx, yq Ñ Cpx, zq P V satisfying the associativity and unit conditions
which demand that the following two squares should commute:

Cpy, zq b Cpx, yq b Cpw, xq Cpx, zq b Cpw, xq

Cpy, zq b Cpw, yq Cpw, zq

Cpx, yq Cpx, yq b Cpx, xq

Cpy, yq b Cpx, yq Cpx, yq

˝

idb˝

˝bid

˝

˝

1ybid

idb1x

˝

Remark 4.19. It is immediate from the definition that a locally small 1-category
defines a category enriched in Set.

Example 4.20. If C and D are V-enriched categories, then the corresponding
V-enriched product category C ˆD has as its set objects pairs pc, dq for c P C and
d P D. For pc, dq and pc1, d1q two objects as above, the corresponding hom-object is
given by

Cpc, c1q b Dpd, d1q

The composition operation is the braiding followed by the tensor product of the
respective composition operations:

pC ˆ Dqppc1, d1q, pc2, d2qq b pC ˆ Dqppc2, d2q, pc3, d3qq

pCpc1, c2q b Dpd1, d2qq b pCpc2, c3q b Dpd2, d3qq

pCpc1, c2q b Cpc2, c3qq b pDpd1, d2q b Dpd2, d3qq

Cpc1, c3q b Dpd1, d3q “ pC ˆ Dqppc1, d1q, pc3, d3qq

–

˝Cb˝D

Example 4.21. Let C be a V-enriched category. The opposite V-enriched cate-
gory Cop has the same objects as C, with hom-objects Coppc, c1q :“ Cpc1, cq and
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with composition given by braiding followed by composition in C:

Coppc1, c2q b Coppc2, c3q

Cpc2, c1q b Cpc3, c2q

Cpc3, c2q b Cpc2, c1q

Cpc3, c1q “ Coppc1, c3q

–

˝C

Example 4.22. View R⩾0 as a symmetric monoidal category where the monoidal
product is given by addition of non-negative real numbers (recall x ⩾ y ðñ Dx Ñ

y). We note that R⩾0 is closed, since for a ⩾ b P R⩾0 the corresponding internal
hom may be given by

ra, bs :“ a´ b P R⩾0
Hence it makes sense to talk of R⩾0-enriched categories. Suppose X is a R⩾0-
enriched category. Then X consists of a set of objects X0 and for each x, y P X0

we get a hom-object Xpx, yq P R⩾0. From the defining conditions of what it means
to be R⩾0-enriched, we obtain the triangle inequality:

Xpx, zq `Xpw, xq ⩾ Xpw, zq

In other words,Xp´,´q is reminiscient to a metric. In fact, a R⩾0-enriched category
is nothing more than a Lawvere metric space (only the symmetry condition is
missing from a typical metric space). An R⩾0-enriched functor (see Definition
4.26) f : X Ñ Y between two Lawvere metric spaces is nothing more than a map
of sets X0 Ñ Y0 such that

Xpx, yq ⩾ Y pfx, fyq

This could be considered as a continuous map with respect to the corresponding
induced topologies.

Example 4.23. The category Cat is cartesian closed, hence in particular a symmet-
ric monoidal category. A Cat-enriched category is called a strict 2-category and the
corresponding category of Cat-enriched categories, denoted St-2-Cat, is the category
of strict 2-categories. One notes that St-2-Cat is again cartesian closed, and hence
it makes sense to talk about St-2-Cat-enriched categories, which in turn yields the
notion of a strict 3-category. More generally, a strict n-category is a St-pn´1q-Cat-
enriched category, where St-pn ´ 1q-Cat is the category of St-pn ´ 2q-Cat-enriched
categories. We note that the cartesian structure on the category St-pn ´ 1qCat is
just taking products of strict pn ´ 1q-categories, while cartesian closedness follows
from Proposition 4.53 (the corresponding internal Hom is given by the Day internal
Hom).

Any V-category C has an underlying category:

Definition 4.24. If C is a V-category, its underlying category C0 is the 1-category
with the same collection of objects and with Hom-sets defined by applying the
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underlying set functor p´q0 : V Ñ Set to the hom-objects Cpx, yq P V. The
identity arrow 1x : 1 Ñ Cpx, xq is already an element of Cpx, xq0 :“ Vp1,Cpx, xqq

and the composite of two arrows f : 1 Ñ Cpx, yq and g : 1 Ñ Cpy, zq is defined to
be the composition

1 Cpy, zq ˆ Cpx, yq Cpx, zq
˝gbf

Proposition 4.25. A cartesian closed category V defines a V-category with
‚ the same objects as V.
‚ hom object in V from a to b being the internal hom ra, bs P V.
‚ the identity map 1a : ‹ Ñ ra, as and composition map ˝ : rb, cs ˆ ra, bs Ñ

ra, cs defined by taking the transposes of

‹ ˆ a
–

ÝÑ a, rb, cs ˆ ra, bs ˆ a
idˆev
ÝÑ rb, cs ˆ b

ev
ÝÑ c

where the evaluation map eva,b : ra, bs ˆ a Ñ b is the
´

´ ˆa % ra,´s

¯

-
adjunct of the identity 1ra,bs : ra, bs Ñ ra, bs.

Proof. See [38] page 398 Lemma A.2.3. □

Definition 4.26. A V-enriched functor or V-functor F : C Ñ D is given by
‚ a mapping on objects that carries each x P C to an object Fx P D

‚ for each pair of objects x, y P C, a morphism Fx,y : Cpx, yq Ñ DpFx,Fyq P

V so that the V-functoriality diagrams commute:

Cpy, zq b Cpx, yq Cpx, zq 1 Cpx, xq

DpFy,Fzq b DpFx,Fyq DpFx,Fzq DpFx,Fxq

˝

Fy,zbFx,y

˝

Fx,z 1Fx

1x

Fx,x

Example 4.27. Let C be a V-category and fix an object c P C. The enriched
representable (covariant) V-functor Cpc,´q : C Ñ V is defined on objects by the
assignment C Q x ÞÑ Cpc, xq P V and the assignment

Cpc,´qx,y : Cpx, yq Ñ rCpc, xq,Cpc, yqs

is defined by means of the adjunct of the internal composition map for C

Cpx, yq b Cpc, xq Cpc, yq
˝

Analogously, the enriched representable (contravariant) V-functor Cp´, cq : C Ñ

V is defined on objects by the assignment C Q x ÞÑ Cpx, cq and the assignment

Cp´, cqx,y : Cpx, yq Ñ rCpy, cq,Cpx, cqs

is defined by means of the adjunct of the internal composition map

Cpy, cq b Cpx, yq Cpx, cq˝

Definition 4.28. A V-enriched natural transformation or V-natural transforma-
tion α : F Ñ U between V-enriched functors F,U : C Ñ D is defined by the follow-
ing data:
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‚ For all x P C an arrow αx : 1 Ñ DpFx,Uxq so that for each pair of objects
x, y P C, the following square commutes in V:

Cpx, yq DpFy,Uyq b DpFx,Fyq

DpUx,Uyq b DpFx,Uxq DpFx,Uyq

Ubαx

αybF

˝

˝

Remark 4.29. There is an obvious composition for V-natural transformations: the
vertical composite βα of V-natural transformations α : F Ñ U and β : U Ñ H, both
from C Ñ D, has component βαqx at x P C defined by the composite

1 DpUx,Hxq b DpFx,Uxq DpFx,Hxq
βxbαx ˝

Having such a notion of coomposition, a V-natural transformation α : F Ñ U is
called a V-natural isomorphism if there exists an inverse α´1 : U Ñ F.

Example 4.30. A morphism f : 1 Ñ Cpx, yq in the underlying category of a
V-category C defines a V-natural transformation f‹ : Cpy,´q Ñ Cpx,´q whose
component at z P C is defined by applying the isomorphism

Vp1, rCpy, zq,Cpx, zqsq – VpCpy, zq,Cpx, zqq

to the morphism

1
f

ÝÑ Cpx, yq
Cp´,zq
ÝÑ rCpy, zq,Cpx, zqs

Corollary 4.31. For any cartesian closed category V, there is a 2-category V-Cat
of V-categories, V-functors and V-natural transformations.

Proof. See [38] A.3.6. □

Lemma 4.32. For objects x, y in a V-category C the following are equivalent:
(i) x and y are isomorphic as objects of the underlying category of C.
(ii) The Set-valued unenriched representable functors C0px,´q,C0py,´q : C Ñ

Set are naturally isomorphic.
(iii) The V-valued unenriched representable functors Cpx,´q,Cpy,´q : C Ñ

V are naturally isomorphic.
(iv) The V-valued V-functors Cpx,´q,Cpy,´q : C Ñ V are V-naturally iso-

morphic.

Proof. One notes that the underlying set functor is actually a 2-functor p´q0 : V-Cat Ñ

Cat. Hence the fourth statement implies the third. The tirhd statement implies the
second by whiskering with the underlying set functor p´q0 : V Ñ Set. The second
statement implies the first by the unenriched Yoneda Lemma. Finally, the first
statement implies the last as follows: if f : 1 Ñ Cpx, yq and g : 1 Ñ Cpy, xq define
an isomorphism in the underlying category of C, then the corresponding V-natural
transformations of Example 4.30 define a V-natural isomorphism. □

4.3.1. Enriched (Co)Ends. Let V be a closed symmetric monoidal category and let
C be V-enriched. Let F : Cop ˆ C Ñ V be a V-enriched functor. Then there is a
covariant action of C on F, with components

ζx,y,z : Fpx, yq b Cpy, zq Ñ Fpx, zq

as well as a contravariant action of C on F with components

ξx,y,z : Fpy, zq b Cpx, yq Ñ Fpx, zq
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Spelling this out explicitly, the covariant action comes about by taking the adjunct
of the morphism

´

Fpx,´q : Cpy, zq Ñ rFpx, yq,Fpx, zqs

¯

P VpCpy, zq, rFpx, yq,Fpx, zqsq

while the contravariant action is obtained as the adjunct of the morphism
´

Fp´, zq : Cpx, yq Ñ rFpy, zq,Fpx, zqs

¯

P VpCpx, yq, rFpy, zq,Fpx, zqsq

Definition 4.33. Let C be a V-enriched category and suppose we are given a
V-enriched functor F : Cop ˆ C Ñ V,

‚ A V-extranatural transformation ϑ : v 9ÑF from v to F consists of a family
of arrows in V

ϑc : v Ñ Fpc, cq

indexed by objects c P C, such that for every pair of objects px, yq in C,
the composites below agree:

v b Cpx, yq Fpx, xq b Cpx, yq Fpx, yq

v b Cpx, yq Fpy, yq b Cpx, yq Fpx, yq

ϑxbid ζx,x,y

ϑybid ξx,y,y

‚ A V-enriched end of F is an object
ż

c : C

Fpc, cq P V

equipped with a V-extranatural transformation

ϑ :

ż

c : C

Fpc, cq 9ÑF

such that for any other V-extranatural transformation ω : v 9ÑF, there
exists a unique morphism f : v Ñ

ş

c : C

Fpc, cq such that

ωc “ ϑcf

for all objects c in C.

Remark 4.34. For V a closed symmetric monoidal category and C a V-enriched
category along with a V-enriched functor F : Cop ˆ C Ñ V a V-enriched functor,
the enriched end of F is equivalently given as the equalizer of

ś

cPC

Fpc, cq
ś

c1,c2PC

rCpc1, c2q,Fpc1, c2qs

ζ

ξ

with ζ in components given by

ξc1,c2 : Fpc2, c2q Ñ rCpc1, c2q,Fpc1, c2qs

which is defined to be the adjunct of

Fp´, c2q : Cpc1, c2q Ñ rFpc2, c2q,Fpc1, c2qs

Similarily, ξ has components given by

ζc1,c2 : Fpc1, c1q Ñ rCpc1, c2q,Fpc1, c2qs

which is defined to be the adjunct of

Fpc1,´q : Cpc1, c2q Ñ rFpc1, c1q,Fpc1, c2qs
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Dually, the enriched coend is the coequalizer of
š

c1,c2

Cpc2, c1q b Fpc1, c2q
š

c
Fpc, cq

where the parallel morphisms are again induced by the covariant and contravariant
action of F.

4.3.2. Enriched Yoneda Lemma. In order to make sense of an enriched Yoneda
Lemma, we need to define enriched functor categories:

Definition 4.35. Let C and D be V-enriched categories. Then the V-enriched
functor category DC is the V-enriched category whose

‚ objects are given by V-enriched functors C Ñ D.
‚ hom-objects in V are given by the enriched end-formula:

DCpF,Uq :“

ż

c : C

DpFc,Ucq

Lemma 4.36. The underlying set of the V-object of V-natural transformations
VCpF,Uq is the set of V-natural transformations F Ñ U.

Proof. The underlying set functor p´q0 “ Vp1,´q preserves all limits. Therefore,
there is an equalizer diagram in Set of the form

Vp1,
ş

c : C

rFc,Ucsq
ś

cPC

VpFc,Ucq
ś

c,c1PC

VpFc1,Ucq

where we identified Vp1, rFc,Ucsq – VpFc,Ucq. The object in the middle is
the set of indexed sets of component morphisms tFc

ηc
Ñ UcucPC. The fact that

Vp1,
ş

c : C

rFc,Ucsq is an equalizer for the above parallel pair then precisely means

that its elements are V-enriched natural transformations. □

Example 4.37. For V “ Set, the above reproduces the ordinary functor category.

Example 4.38. For V “ R⩾0 Yt8u with the monoidal product given by addition,
a V-enriched category X is simply a metric space, with the distance between points
x, y P X given by Xpx, yq. Given two such metric spaces X,Y and maps f, g : X Ñ

Y , the distance between the maps is

Y Xpf, gq “

ż

x : X

Y pfpxq, gpxqq “ sup
xPX

Y pfpxq, gpxqq

The Yoneda Lemma essentially boils down to ’evaluation at the identity is an
isomorphism’. In the enriched context the enriched object of natural transforma-
tions is defined via a limit, so it is more straightforward to define the map which
induces a natural transformation instead. Given an object c in a small V-category
C and a V-functor F : C Ñ V, the internal action of F on arrows transposes to
define a map that equalizes the parallel pair

Fc
ś

zPC

rCpc, zq,Fzs
ś

x,yPC

rCpc, xq b Cpc, yq,Fys

and thus this induces a canonical map Fc Ñ VCpCpc,´q,Fq in V.

Theorem 4.39 (Enriched Yoneda Lemma). For any small V-category C, any
object c P C, and any V-functor F : C Ñ V, the canonical map defines an isomor-
phism in V

Fc VCpCpc,´q,Fq
–
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which is V-natural in both c and F. In terms f enriched ends, this reads as
ż

c : C

rCpc, c1q, F c1s – Fc

Proof. In order to verify the isomorphism, it suffices to show that the internal action
of F constitutes a limit cone together with Fc. So suppose we are given another
cone over the parallel pair

v
ś

zPC

rCpc, zq,Fzs
ś

x,yPC

rCpc, xq b Cpx, yq,Fys
λ

We then define a candidate factorization by evaluating the transpose of the com-
ponent λc at 1c:

λcp1cq :“ v Cpc, cq b v Fc
1cbv λc

That λcp1cq : v Ñ Fc indeed defines a factorization of λ through the limit cone,
it suffices to show commutativity at each component rCpc, zq,Fzs of the product,
which one verifies in transposed form:

Cpc, zq b v

Cpc, zq b Cpc, cq b v Cpc, zq b v

Cpc, zq b Fz Fz

idb1cbv

idbλc

Fc,z

λz

˝bv

The upper triangle commutes, because of the identity law for C while the bottom
square commutes because λ defies a cone over the parallel pair. For the remaining
details, see Theorem A.3.11 [38]. □

Corollary 4.40. For any small V-category C, any object c P C ad any V-
fuctor F : C Ñ V, there is a natural bijection between V-natural transformations
α : Cpc,´q Ñ F and elements u : 1 Ñ Fc in the underlying set of Fc implemented
by evaluationg the component at c P C at the identity 1c.

Definition 4.41. A cosmos is a complete, cocomplete, closed symmetric monoidal
category V.

Proposition 4.42 (Enriched Co-Yoneda Lemma). Let V be a cosmos. For F : Cop Ñ

D a V-enriched functor, and for c P C, there is a natural isomorphism

F –

c : C
ż

Cpc,´q b Fc

Proof. By the definition of enriched coends, enriched natural transformations of
the form

c : C
ż

Cpc,´q b Fc Ñ U

are in natural bijection with systems of morphisms

Cpc, c1q b Fc Ñ Uc1
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which satisfy compatibility conditions in their dependence on c and c1. By the
internal hom adjunction these systems are in natural bijection to systems of the
form

Fc Ñ rCpc, c1q,Uc1s

satisfying analogous compatibility conditions. These in turn are in natural bijection
with systems of morphisms

Fc Ñ VCpCpc,´q,Uq

natural in c. By the enriched Yoneda Lemma these systems are in natural bijection
with systems of morphisms

Fc Ñ Uc

natural in c. In particular, all these identifications are also natural in U. Therefore,
this shows that

VC
´

c : C
ż

Cpc,´q b Fc,´
¯

– VCpF,´q

For further details see the Nlab page Geometry of physics Proposition 3.18. □

Proposition 4.43 ([38] Proposition A.3.3.14). Let A : Cop ˆ D Ñ V be a V-
functor so that for each d P D, the V-functor Ap´, dq : Cop Ñ V is represented by
some Fc P D, meaning there exists a V-natural isomorphism

Cpc,Fdq – Apc, dq

Then there is a unique way of extending the mapping c P C ÞÑ Fc P D to a V-fuctor
F : C Ñ D so that the isomorphisms are V-natural in c P C as well as d P D.

Definition 4.44. Let C be a V-enriched category. The enriched covariant Yoneda
embedding is the enriched functor

よ : C Ñ VCop
, c ÞÑ Cp´, cq

Analogously, the enriched contravariant Yoneda embedding is the enriched functor

ふ : Cop Ñ VC, c ÞÑ Cpc,´q

Definition 4.45. Let C and D be V-enriched categories.
‚ A V-enriched adjunction

C D
F

U

%

is a pair of V-enriched functors such that we have V-natural isomorphisms
between enriched hom-functors

CpF,´q – Dp´,Uq

‚ Let F : C Ñ D be a functor. The enriched left Kan extension along F,
denoted LanF, is an enriched left adjoint to the precomposition functor
F‹ : ED Ñ EC. Analogously, the enriched right Kan extension along F,
denoted RanF, is an enriched right adjoint to the precomposition functor
F‹ : ED Ñ EC. In other words, enriched right and left Kan extensions fit
into a diagram of enriched adjunctions

ED ECF‹

LanF

RanF

%
%

https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LimitsAndColimits
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Analogous to standard category theory we have:

Proposition 4.46. For V a cosmos, let C,D be small V-enriched categories and
let F : C Ñ D be a V-enriched functor. Then precomposition with F constitutes a
V-enriched functor

F‹ : DV Ñ CV

U ÞÑ UF

The enriched functor F‹ has both an enriched right adjoint RanF, as well as an
enriched left adjoint LanF given by taking right and left Kan extensions along F,
respectively. Explicitly, the right Kan extension RanF evaluated at U P CV is given
by the enriched end

RanFU –

ż

c : C

rDp´,Fcq,Ucs

while the left Kan extension LanF evaluated at U P CV is given by the enriched
coend

LanFU –

c : C
ż

DpFc,´q bV Fc

Proof. This is essentially analogous to the unenriched case. For details see the Nlab
article geometry of physics – categories and toposes Proposition 3.29. □

4.3.3. Tensors and Cotensors. This chapter is based on the Nlab page powered and
copowered category.

Fix a cosmos V.

Definition 4.47. Let C be a V-enriched category.
‚ A powering or cotensoring of C over V is a functor t´,´u : Vop ˆC Ñ C

such that for any v P V we have enriched natural isomorphisms (natural
in c1, c2 P C)

rv,Cpc1, c2qs – Cpc1, tv, c2uq

‚ A copowering or tensoring of C over V is a functor d : V ˆ C Ñ C such
that for any v P V we have enriched natural transformations (natural in
c1, c2 P C)

Cpv d c1, c2q – rv,Cpc1, c2qs

‚ If C is equipped with a tensoring or cotensoring, then C is called tensored
or cotensored over V.

Remark 4.48. If C is both tensored an cotensored, then we get a pair of adjunctions

C C

vd´

tv,´u

rv,´s

%
%

and therefore, in particular, v d ´ % tv,´u.

Example 4.49. The canonical examples are given by Remark 2.21 and Remark
2.24.

https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#KanExtension
https://ncatlab.org/nlab/show/powered+and+copowered+category
https://ncatlab.org/nlab/show/powered+and+copowered+category
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Example 4.50. Suppose C is cocomplete. Then the category C∆op
of simplicial

objects in C is simplicially enriched, i.e., sSet-enriched. Moreover, it is tensored
over sSet. Indeed, the tensoring is defined by

´ d ´ : sSet ˆ C∆op
Ñ C∆op

, sSet ˆ C∆op
Q pS,Fq ÞÑ

´

rns ÞÑ
ž

Sn

Frns

¯

P C∆op

The simplicial mapping object C∆op
p´,´q may then be the deduced from the above

formula as follows: We want to have a natural isomorphism

C∆op
pS d F,Uq – sSetpS,C∆op

pF,Uqq

Taking S to be representable we obtain

C∆op
p∆n d F,Uq – sSetp∆n,C∆op

pF,Uqq – C∆op
pF,Uqn

In the future we shall simply denote C∆op
pF,Uq by MappF,Uq.

Dually, in the case where C is complete, the simplicially enriched category C∆op
is

also cotensored:

t´,´u : sSetop ˆ C∆op
Ñ C∆op

, C∆op
Q pS,Fq ÞÑ

´

rns ÞÑ
ź

Sn

Frns

¯

P C∆op

4.3.4. Day Convolution. This chapter is based on the NLab article Day convolution
and the corresponding material in [23].

Any category of functors on a (symmetric) monoidal category inherits a (symmet-
ric) monoidal structure via a categorified convolution product. Before explaining
this further, we note that there is a concept of a symmetric monidal V-enriched cat-
egory: One simply has an enriched tensor functor and suitable enriched coherence
datum (for details see Definition 4.1 in [22]).

Definition 4.51. Let V be a closed symmetric monoidal category with all small
limits and colimits and let pC,b,1q be a small V-enriched monoidal category. Then
the Day convolution tensor product on the V-enriched functor category VC

bDay : V
C ˆ VC Ñ VC

pF,Uq ÞÑ F bDay U

is given by the enriched coend

pF bDay Uqpcq :“

pc1,c2q : CˆC
ż

Cpc1 b c2, cq bV Fc1 bV Uc2

Remark 4.52. We note that if b : VC ˆ VC Ñ VC denotes the external tensor
product, i.e., FbU :“ bV ˝ pF,Uq for F,U P VC, then the Day convolution product
of two functors is equivalently the left Kan extension of their external tensor product
along the tensor product bC:

C ˆ C V

C

FbU

bC FbDayU–LanbC
pFbUq

Thus, we also have the characterizing universal property given by

VCpF bDay U,Hq – VCˆCpFbU,H ˝ bCq

https://ncatlab.org/nlab/show/Day+convolution


62

Proposition 4.53. For pC,b,1q a small symmetric monoidal V-enriched cate-
gory, the V-enriched functor category VC is a closed symmetric monoidal category
with the tensor product being given by Day convolution, that is, pVC,bDay,ふC1q

constitutes a closed symmetric monoidal category. Its internal hom r´,´sDay is
given by the end

rX,Y sDaypcq –

ż

c1 : C

rXpc1q, Y pcb c1qsV

–

ż

c1,c2

rCpcb c1, c2q, rXc1, Y c2sVsV

where r´,´sV is the internal hom in V.

Proof. Let us start by verifying associativity: For X,Y, Z P VC we have

X bDay pY bDay Zq –

a,b
ż

Cpab b,´q bV XabV pY bDay Zqpbq

–

a,b
ż

Cpab b,´q bV XabV

c,d
ż

Cpcb d, bq bV Y cbV Zd

–

a,b,c,d
ż

Cpab b,´q bV Cpcb d, bq bV XabV Y cbV Zd

–

a,c,d
ż

Cpab cb d,´q bV XabV Y cbV Zd

In the same fashion one verifies

pX bDay Y q bDay Z –

a,c,d
ż

Cpab cb d,´q bV XabV Y cbV Zd

Moreover, we have

X bDayふC1 –

a,b
ż

Cpab b,´q bV Xab Cp1, bq

–

a,b
ż

Cpab b,´q bV Cp1, bq bXa

–

a
ż

Cpab 1,´q bV Xa

–

a
ż

Cpa,´q bV Xa

– X

The other claims concerning the symmetric monoidal structure present similar exer-
cises in the spirit of the usual coend yoga. Finally, let us verify the claim concerning
the internal hom:

VCpX bDay Y, Zq –

ż

c

VppX bDay Y qpcq, Zcq

–

ż

a,b,c

VpCpab b, cq bV XabV Y b, Zcq
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–

ż

a,b,c

VpXa, rY b, rCpab b, cq, ZcsVsVq

–

ż

a,b

VpXa, rY b,

ż

c

rCpab b, cq, ZcsVsVq

–

ż

a,b

VpXa, rY b, Zpab bqsVq

–

ż

a

VpXa,

ż

b

rY b, Zpab bqsVq

–

ż

a

VpXa, rY, ZsDaypaqq

– VCpX, rY,ZsDayq

Showing the second formula for the internal hom is an easy exercise in the coend
yoga. □

Remark 4.54. Let C be as in the above proposition and consider the Yoneda embed-
dings ふc and ふc1 for objects c, c1 P C. Then the Day convolution tensor product
of representables is the representable of the respective tensor product of objects:

pふcbDayふc
1qprcq “

c1,c2
ż

Cpc1 b c2,rcq bV ふcpc1q bV ふc
1pc2q

–

c2
ż

c1
ż

´

Cpc1 b c2,rcq bV ふcpc1q

¯

bV ふc
1prcq

–

c2
ż

Cpcb c2,rcq bV ふc
1prcq

–ふpcb c1qprcq

In that sense, Day convolution is an extension of the ordinary tensor product to
the whole functor category and not just its representables.

Example 4.55. Let V :“ Set and let C be a category with finite products and
terminal object, that is, a cartesian symmetric monoidal category. Now consider
the presheaf category SetC

op
which, by Proposition 4.53, may be endowed with a

closed symmetric monoidal structure given by the Day convolution tensor product,
since Cop is a Setop-enriched category. For X,Y P SetC

op
, we have

X b Y :“

c1,c2
ż

Coppc1 ˆop c2,´q ˆXc1 ˆ Y c2

–

c1,c2
ż

よc1 ˆよc2 ˆXc1 ˆ Y c2

–

´

c1
ż

よc1 ˆXc1

¯

ˆ

´

c2
ż

よc2 ˆ Y c2

¯

– X ˆ Y

Thus in this case the Day convolution monoidal structure agrees with the typical
cartesian monoidal structure on the presheaf category SetC

op
. The corresponding

internal hom may then also be deduced by using the second formula presented in
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Proposition 4.53:

rX,Y sDaypcq “

ż

c1,c2

SetpCoppcˆ c1, c2q, SetpXc1, Y c2qq

–

ż

c1,c2

SetpCpc2, cq ˆ Cpc2, c1q, SetpXc1, Y c2qq

–

ż

c1,c2

SetpCpc2, cq ˆ Cpc2, c1q ˆXc1, Y c2q

–

ż

c2

SetpCpc2, cq ˆ

´

c1
ż

Cpc2, c1q ˆXc1

¯

, Y c2q

–

ż

c2

SetpCpc2, cq ˆXc2, Y c2q

– SetC
op

pよcˆX,Y q

which retrieves the formula from Example 4.14.

Example 4.56. Consider the category F of finite pointed sets, which has as its
objects finite sets which have chosen basepoints. Morphisms between such pointed
sets are given by functions between the sets that map basepoint to basepoint. The
category F is symmetric monoidal with the smash product

^ : F ˆ F Ñ F, pF1, F2q ÞÑ F1 ^ F2 :“
F1 ˆ F2

F1 _ F2

where _ : F ˆ F Ñ F is the wedge sum, which maps pF1, F2q to the quotient of
the disjoint union of F1 and F2 where the respective basepoints are identified:

F1

š

F2

‹F1 „ ‹F2

To summarize and to put it more concretely, the smash product of two pointed sets
F1 and F2 is the quotient of the cartesian product F1 ˆ F2, where all points with
the basepoint as a coordinate are identified (that is, p‹F1

, f2q „ ‹ „ pf1, ‹F2
q for all

f1 P F1 and all f2 P F2). In particular, if F1 :“ t‹, 1, . . . , lu and F2 :“ t‹, 1, . . . , l1u
for natural numbers l, l1, then F1 ^ F2 “ t‹, 1, . . . , ll1u. In fact, the symmetric
monoidal category F is closed:

FpF1 ^ F2, F3q – FpF1, F
F1
3 q

where FF1
3 is the corresponding internal hom which is given as the pointed set of

basepoint preserving functions F1 Ñ F3, which itself has as the distinguished base-
point the constant function ‹ : F1 Ñ F3 which maps every f P F1 to the basepoint in
F3. Moreover, consider the simplex category ∆, which may also be viewed as a sym-
metric monoidal category, where the corresponding tensor functor ` : ∆ ˆ ∆ Ñ ∆
is simply given by taking the product in the category ∆. Note that a product of rns

and rms in ∆ is given by rn`ms with the evident projection maps. Finally, let Cart
be the category of cartesian spaces, which has as its set of objects all those open
subsets U Ă Rd, for varying d, such that U is diffeomorphic to Rd. Morphisms in
Cart are given by smooth maps between the respective open subsets. This category
is symmetric monoidal too by means of the cartesian product.

Having all this, we let V :“ Set and C :“ p∆ˆdqopˆFˆCartop, where ∆ˆd :“
d

ś

i“1

∆



65

is the n-fold product of the simplex category. The category C is then symmetric
monoidal and V-enriched (just a standard category). By Proposition 4.53 we thus
obtain that the functor category VC is a closed symmetric monoidal category with
the tensor product being given by Day convolution, that is, for X,Y P VC the Day
convolution tensor product X b Y is given by
C
ż

C
ż

∆ˆdpm,m1 ` m2q ˆ FpF1 ^ F2, F q ˆ CartpU,U1 ˆ U2q ˆXpm1, F1, U1q ˆ Y pm2, F2, U2q

where the coend is taken over the variables pmi, Fi, Uiq P ∆ˆd ˆ F ˆ Cart for
i “ 1, 2. Motivation for why we would choose C the way we did here is given in
later sections on smooth symmetric monoidal p8, dq-categories.
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5. Model Categories

Frodo: ’I wonder what sort of a
tale we’ve fallen into?’
Sam: ’I wonder if we’ll ever be put
into songs or tales.’
Frodo: ’What? You mean like in
the songs where they tell you what
to do?’
Sam: ’No, I mean the ones that
really mattered. Full of darkness
and danger, they were, and
sometimes you didn’t want to know
the end, because how could the end
be happy? How could the world go
back to the way it was when so
much bad had happened? But in
the end, it’s only a passing thing,
this shadow. Even darkness must
pass. A new day will come, and
when the sun shines, it’ll shine out
the clearer.

Tolkien, J.R.R. The Fellowship of
the Ring

The following Chapter is based on [19].

The category of topological spaces naturally allows us to study continuous de-
formations between spaces, which is captured by the notion of a homotopy. Model
category theory is a powerful framework that generalizes homotopy theory by in-
troducing an abstract category with additional structure that captures the notion
of homotopy between morphisms. A model category provides a unified approach to
many different areas of homotopy theory and allows us to define homotopy limits
and colimits, as well as notions of homotopy equivalences between objects. This
extra structure is essential for studying the homotopical behavior of mathematical
objects in a wide range of contexts, including algebraic topology, algebraic geom-
etry, and algebraic K-theory. This chapter will introduce the basic concepts and
properties of model categories, and lay the groundwork for future discussions of
higher category theory and 8-categories. Model category theory provides a power-
ful tool for understanding the homotopical structure of mathematical objects and
their relationships to one another, and is a key ingredient in many areas of modern
mathematics and physics.

5.1. Definitions. Recall that Crns is the category of functors rns Ñ C. In par-
ticular, if n “ 1 the category Cr1s may be identified with the category that has as
objects morphisms of C and as morphisms commutative squares in C.

Definition 5.1. Let C be a category.
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‚ A morphism f in C is called a retract of a morphism f 1 in C, if there
exists a commutative diagram

domf domf 1 domf

codf codf 1 codf

f f 1 f

1domf

1codf

‚ A functorial factorization for C is a section Ξ: Cr1s Ñ Cr2s of the com-
position functor d1 : Cr2s Ñ Cr1s, i.e., d1Ξ “ 1Cr1s .

Remark 5.2. Equivalently, a functorial factorization is a pair pΞ1,Ξ2q with Ξ1,Ξ2

being functors Cr1s Ñ Cr1s such that for any morphism f in C we have the following
factorization:

domf codf

X

f

Ξ2fΞ1f

Definition 5.3. Let i and p be morphisms in C. We say that i has the left lifting
property (LLP) with respect to p and p has the right lifting property (RLP) with
respect to i, if for any commutative diagram

dompiq domppq

codpiq codppq

i p

there exists a lift h : codpiq Ñ domppq such that

dompiq domppq

codpiq codppq

i ph

commutes.

Definition 5.4. Let C be a category.
‚ A model structure on C is a triple

pW, Fib, Cofq

consisting of distinguished classes of morphisms W,Fib,Cof of C such
that the following axioms hold:

– 2-out-of 3 axiom: The class W contains all isomorphisms in C and
for all morphisms f, f 1 in C, if any two of f, f 1, ff 1 is in W, then the
third is also in W.

– Retract axiom: If f, f 1 are morphisms in C such that f is a retract of
f 1 and f 1 is a morphism in one of the three classes W,Fib,Cof, then
so is f .

– Lifting axiom: The class of morphisms W X Fib enjoys the LLP with
respect to the morphisms in Fib. The class of morphisms W X Cof
enjoys the LLP with respect to the morphisms in Cof.
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– Factorization axiom: There exist functorial factorizations Ξctf, Ξtcf
such that for all f P Cr1s we have

‚

domf codf

‚

f

CofQpΞctfq1f pΞctfq2fPWXFib

WXCofQpΞtcfq1f pΞtcfq2fPFib

where ‚ denotes the respective (most likely distinct) codomains of the
morphisms pΞctfq1f and pΞtcfq1f .

‚ For a model structure

pW, Fib, Cofq

on C the morphisms in W are referred to as weak equivalences, the mor-
phisms in Fib are called fibrations and the morphisms in Cof are called
cofibrations. Morphisms in Fib» :“ W X Fib are called trivial fibrations,
while the morphisms in Cof» :“ W X Cof are referred to as trivial cofibra-
tions.

‚ A model category C is the information of a model structure

pC, W, Fib, Cofq

on C such that C is both complete and cocomplete.

Remark 5.5. The notation Ξctf and Ξtcf is chosen so as to remind the reader that
the first functorial factorization factorizes morphisms into

‚ ‚ ‚
cofibration trivial fibration

c tf

while the second one factorizes as

‚ ‚ ‚
trivial cofibration fibration

tc f

which motivates the shorthand-notation ctf and tcf.

Example 5.6. Let C be a complete and cocomplete category. One can define three
different model structures on C by defining one of the subcategories W,Cof,Fib to
contain all isomorphisms of C, and the other two to contain all maps of C. This
can be shown to give rise to three distinct model structures for C. For details see
[19].

Example 5.7. For model categories B and C, the category BˆC inherits a model
structure and may thus be interpreted as a model category.

Remark 5.8. Model categories are self dual: For a model category C the opposite
category Cop has a canonical model structure induced by the one on C. Since we
also have pCopqop “ C as model categories, every theorem about model categories
has a dual theorem.

Since a model category C is, by definition, both complete and cocomplete it
must always have both a terminal object ‹ P C and an initial object H P C.

Definition 5.9. Let C be a model category with terminal object ‹ and initial
object H.

‚ An object X P C is cofibrant if the morphism

H ÝÑ X

is a cofibration.



69

‚ An object X P C is fibrant if the morphism

X ÝÑ ‹

is a fibration.

Proposition 5.10. Over and under categories of model categories come endowed
with a model structure. More concretely, if C is a model category and X P C, then
C induces a model structure on both C{X and X{C.

Proof Sketch. Let Π: C{X Ñ C be the forgetful functor. A morphism f P C{X
is defined to be a cofibration (fibration, weak equivalence) if and only if Πf is a
cofibration (fibration, weak equivalence). □

Note that we can decompose the morphism H ÝÑ X by means of our functorial
factorization as

H LX X
pΞctfq1pHÑXq pΞctfq2pHÑXq

First of all, this gives rise to a functor L : C Ñ C which sends a morphism f in C

to the bottom map of the image of the commutative diagram

H H

domf codf
f

under pΞctfq1. In particular, we note that LX is cofibrant (the map H Ñ LX is a
cofibration by construction). Moreover, we get a natural transformation

LX
lX

ÝÑ X P Fib»

with lX “ pΞctfq2pH Ñ Xq. The maps lX : LX Ñ X assemble into a natural weak
equivalence

l : L
»
Ñ 1C

that is, l is a natural transformation such that each component is a weak equiva-
lence. Naturality is obtained from

pΞctfq2

˜ H X

H Y

f

¸

“

LX X

LY Y

Lf

lX

f

lY

Utilizing the other functorial factorization Ξtcf in the definition of the model cate-
gory C, we also obtain a functor R : C Ñ C such that RX is fibrant and a natural
weak transformation r : 1C

»
Ñ R. The functor L : C Ñ C is referred to, very aptly

so, as the cofibrant replacement functor and the functor R : C Ñ C is referred to
as the fibrant replacement functor.

Example 5.11. The most important model category we will consider is the Quillen
model structure on simplicial sets sSetQuillen. Cofibrations are given by monomor-
phisms, and weak equivalences are given by weak homotopy equivalences i.e. mor-
phisms which become weak homotopy equivalences in Top after applying geometric
realization. A fibrant replacement functor for sSetQuillen is given by Kan’s functor
Ex8. We will talk more about the Quillen model structure later.

Lemma 5.12 (Retract argument). Suppose f “ pi in a category C, and suppose
that f has the LLP with respect to p. Then f is a retract of i. Dually, if f has the
RLP with respect to i, then f is a retract of p.
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Proof. Suppose f has the LLP with respect to p. Then we have a lift r : codf Ñ

codpiq such that
domf codpiq

codf codppq

f p

i

r

commutes. But then the diagram

domf dompiq domf

codf codpiq codf

f i f

r p

realizes f as a retract of i. □

The retract argument from above implies that some of the axioms for a model
category are redundant.

Notation 5.13. If C is a model category and D Ă MorC is a family of morphisms
from C, then define mD to be all those morphisms that enjoy the LLP with respect
to all morphisms in D. Analogously, Dm is the family of morphisms that enjoy the
RLP with respect to all morphisms in D.

Lemma 5.14. Let C be a model category. Then the following holds:

Cof “ mFib»

Cof»
“ mFib

Fib “ Cof»m

Fib»
“ Cofm

Proof. By definition of a model structure, any cofibration has the LLP with respect
to trivial fibrations. Conversely, suppose f has the LLP with respect to all trivial
fibrations. By means of our functorial factorizations we may factorize f “ pi, where
i is a cofibration and p is a trivial fibration. By assumption f has the LLP with
respect to p, and therefore by Lemma 5.12 f is a retract of i. By the retract axiom
of model categories f P Cof. The part with the trivial cofibration is analogous and
the remaining claims follow by duality. □

Remark 5.15. In particular, any isomorphism in C is a trivial cofibration and a
trivial fibration. Indeed, if f is an isomorphism in C and f 1 P Fib such that we
have a commutative square

domf domf 1

codf codf 1

f f 1

then there is a lift B Ñ C given by the composition

codf domf domf 1f´1

Corollary 5.16. Let C be a model category. Then cofibrations (trivial cofibrations)
are closed under pushouts. That is, if we have a pushout square

domf domf 1

codf codf 1

f f 1
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where f is a cofibration (trivial cofibration), then f 1 is a cofibration (trivial cofibra-
tion). Dually, fibrations (trivial fibrations) are closed under pullbacks.

Proof. Suppose we have a pushout square

domf domf 1

codf codf 1

f f 1

with f being a cofibration. By Lemma 5.14 it suffices to show that f 1 has the LLP
with respect to all trivial fibrations. Let p be a trivial fibration in C and consider
the lifting problem

domf domf 1 domppq

codf codf 1 codppq

q

f p

which admits a lift h : codf Ñ domppq, since f is a cofibration. The data of the
pushout codf 1 of the diagram codf f

ÐÝ domf ÝÑ domf 1 may be equivalently
described as an initial object

´

codf 1, λ : F Ñ codf 1
¯

in the category of elements of F, where F is the functor associated with the given
pushout. The commutative diagram

domf domf 1

codf domppq

f

h

q

gives rise to an object
´

domppq, µ : F Ñ domppq

¯

P elpFq

By the universal property of the pushout, we obtain the existence and uniqueness
of a morphism φ : codf 1 Ñ domppq such that, in particular,

domf 1 codf 1

domppq

φ
q

f 1

commutes, but this exactly solves the lifting problem

domf 1 domppq

codf 1 codppq

f 1

q

φ p

Showing that trivial cofibrations are closed under pushouts is analogous and the
remainder follows by duality. □

One of the most useful results about model categories is provided by the next
lemma:
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Lemma 5.17 (Ken Brown’s lemma). Let C be a model category and suppose D

is a category with a subcategory of weak equivalences which satisfies the 2-out-of 3
axiom.

‚ If F : C Ñ D takes trivial cofibrations between cofibrant objects to weak
equivalences, then F takes all weak equivalences between cofibrant objects
to weak equivalences.

‚ If F : C Ñ D takes trivial fibrations between fibrant objects to weak equiv-
alences, then F takes all weak equivalences between fibrant objects to weak
equivalences.

Proof. Suppose we are given a weak equivalence f of cofibrant objects. By means of
the universal property of the coproduct we may define a map pf, 1codf q : domf

š

codf Ñ

codf . Factor this map into a cofibration domf
š

codf q
ÝÑ C followed by a trivial

fibration C p
ÝÑ codf . Considering the pushout diagram

H domf

codf domf
š

codfιcodf

ιdomf

shows that the inclusion maps domf
ιdomf
ÝÑ domf

š

codf and codf
ιcodf
ÝÑ domf

š

codf
are cofibrations. Since pqιdomf “ f and p are weak equivalences, by the 2-out-
of 3 axiom, qιdomf is a weak equivalence. Analogously, qιcodf is a weak equiva-
lence and hence both qιdomf and qιcodf are trivial cofibrations (of cofibrant ob-
jects). By assumption, both Fpqιdomf q and Fpqιcodf q are weak equivalences. Since
Fppqιcodf q “ Fp1codf q is also a weak equivalence, we conclude from the 2-out-of 3
axiom that Fppq is a weak equivalence, and hence that Fpfq “ Fppqιdomf q is a weak
equivalence, as claimed. The dual statement follows analogously. □

5.2. The Homotopy Category. A bold category theorist, or maybe a delusional
one for that matter, would sometimes like to consider a morphism f in a general
category C as a grand generalization of a path from domf to codf , somehow
presupposing the notion of space which allows for such ideas. A formal (or symbolic)
zig zag of such (composable) paths f1, . . . , fn is then nothing else than an object f
in the functor category Crns. As the name of this chapter might suggest, we need
to bring in a notion of homotopy theory here. A category is said to be equipped
with a subcategory of weak equivalences if this subcategory has the same objects
(it is wide) and its class of morphisms satisfies the 2-out-of 3 axiom. Assuming
the existence of such a subcategory W for the category C and thinking about the
morphisms in W as weak equivalences between spaces, we might get to the idea of
formally inverting the arrows in W.

Definition 5.18. Suppose C is a category with a subcategory of weak equivalences
W.

‚ For n P N, the collection of formal arrows xCrns,W
r1s

reversedy has elements

f “ pf1, . . . , fnq : domf1 Ñ codfn
of formal strings of composable arrows, where for all i we either have
fi P Cr1s or fi is a formal reversal of an arrow in W. Here domf1 and
codfn are defined to be the formal domain and codomain of the formal
arrow f .

‚ The free category freepC,W´1q has the same objects as C with classes of
morphisms
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freepC,W´1qpc, c1q :“
!

f
ˇ

ˇ

ˇ
n P N, f P xCrns, W

r1s

reversedy, domf “ c, codf “ c1
)

Empty strings Cr0s Q Hc : c Ñ c at a particular object c P C, are inter-
preted as the identity at that object. Composition is defined via concate-
nation of strings.

‚ The class of morphisms MorpfreepC,W´1qq gives rise to an equivalence
relation „: An identity morphism 1c in C for an object c P C is identified
with the empty string Hc, while any composable pair pf, f 1q P Cr2s is
identified with its composite f 1 ˝ f . Moreover, for any f P W we want the
formal strings pf, f´1q and pf´1, fq to be equivalent to 1domf and 1codf ,
respectively.

‚ The localization of C at W is the quotient category CrW´1s of freepC,W´1q

obtained from the equivalence relation „:

CrW´1s :“
freepC,W´1q

„

The associated localization functor is the canonical functor

γ : C ↠ CrW´1s

‚ If C is a model category and W is the subcategory of weak equivalences,
then the localization of C at W is called the homotopy category of C and
is denoted by HoC.

Remark 5.19. Any category C is a category with weak equivalences by defining
the corresponding wide subcategory W to be the category having the same objects
as C with only isomorphisms as morphisms. The associated localization is then
trivial:

C – CrW´1s

Notation 5.20. We will sometimes write γC : C ↠ CrW´1s for the corresponding
localization functor, if ambiguity might arise otherwise.

Remark 5.21. It is clear from the definition that HopCopq “ pHoCqop. Moreover, if
B and C are both model categories, then HopBˆCq is isomorphic to HoBˆHoC.

Without passing to a higher set theoretic universe, HoC might very well not be
a category. It turns out however, as we will see soon enough (in Remark 5.31), that
if C is a model category the localization of C at the weak equivalences will always
turn out to be a well-defined category.

Lemma 5.22. Let C be a category with weak equivalences W.
‚ The pair pCrW´1s, γq enjoys a universal property: If a functor F : C Ñ D

sends morphisms of W to isomorphisms in D, then there is a unique
functor CrW´1s Ñ D such that

C D

CrW´1s

γ

F

D!

commutes.
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‚ If DC
W Ă DC denotes the full subcategory of functors C Ñ D which send

morphisms of W to isomorphisms in D, then precomposition with γ yields
an isomorphism with inverse loc:

DCrW´1
s DC

W

γ‹

loc
–

Remark 5.23. As is usual, if some mathematical object enjoys a universal property,
then that mathematical object must be unique up to unique isomorphism. Indeed,
in the above case one proves that if δ : C Ñ E is a functor that takes maps of W to
isomorphisms and enjoys the same universal property as γ, then there is a unique
isomorphism CrW´1s

ζ
ÝÑ E such that ζγ “ δ.

Proof of Lemma 5.22. If F P DC
W, then define locpFq to be identical to F on objects

and morphisms of C. For (formally) reversed arrows f´1 with f P W, define
locpFqpf´1q “ pFfq´1. This is a well-defined functor CrW´1s Ñ D and it is the
unique functor such that the diagram

C D

CrW´1s

γ

F

locpFq

commutes. The isomorphism

DC
W

–
ÝÑ DCrW´1

s

is then given by taking functors F P DC
W to the associated localized functors locpFq,

and natural transformations ζ : F Ñ U are mapped to natural transformations
locpζq : locpFq Ñ locpUq with components locpζqc “ ζc for all objects c. The inverse
of this functor takes a functor U : CrW´1s Ñ D and maps it to Uγ, and natural
transformations ζ are mapped to the whiskering ζγ. □

Definition 5.24. Let C be a model category. Denote by Cc,Cf ,Ccf the full
subcategories of C which contain all cofibrant, fibrant, and bifibrant (objects that
are both fibrant and cofibrant) objects of C, respectively.

Proposition 5.25. Let C be a model category. Then the inclusion functors induce
equivalences of categories:

HoCc

HoCcf HoC

HoCf

«

« «

«

Proof. We shall only verify the equivalence HoCc Ñ HoC. Let Cc
i

ãÑ C denote
the inclusion functor. This functor preserves weak equivalences and thus induces
a functor Hopiq : HoCc Ñ HoC by Lemma 5.22. We then recall the cofibrant
replacement functor L : C Ñ Cc along with its associated natural trivial fibration
X

lX
ÝÑ LX. Since the diagram

LX X

LY Y
lY

Lf

lX

f
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commutes, the 2-out-of 3 property implies Lf P W for any weak equivalence f in
C. Therefore, L preserves weak equivalences and again by Lemma 5.22 gives rise
to a localized functor HopLq : HoC Ñ HoCc. The natural trivial fibration l is then
understood as a natural weak equivalence L ˝ i Ñ 1Cc and i ˝ L Ñ 1C. Hence
this induces natural isomorphisms HopL ˝ iq Ñ 1HoCc and Hopi ˝ Lq Ñ 1HoC, as
claimed. □

Now, if we are given a model category C, then why do we call HoC the homotopy
category of C? What is so homotopical about it? There is a second way to construct
HoC which we will sketch now. Before doing so, recall that if X is an object in C

one defines the fold map ∇ : X
š

X Ñ X by means of the universal property of
the coproduct:

X
š

X

X X

D!∇

Analogously, the diagonal map ∆: X Ñ XˆX is defined by means of the universal
property of the product:

X X

X ˆX

D!∆

Definition 5.26. Let C be a model category, and fix morphisms f, g in C with
the same domain and codomain.

‚ A cylinder for domf is the data of a cylinder object Cylpdomfq for domf
along with a factorization of the fold map:

domf
š

domf domf

Cylpdomfq

∇

c0
š

c1
„

such that c0
š

c1 is a cofibration and the map Cylpdomfq
„
Ñ domf is a

weak equivalence.
‚ A path for codf is the data of a path object Pathpcodfq for codf along

with a factorization of the diagonal map:

codf codf ˆ codf

Pathpcodfq

∆

„ p0ˆp1

such that p0 ˆp1 is a fibration and the map codf „
Ñ Pathpcodfq is a weak

equivalence.
‚ A left homotopy from f to g consists of a cylinder Cylpdomfq for domf

along with a morphism H : Cylpdomfq Ñ codf such that Hc0 “ f and
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Hc1 “ g. More concisely, we have a commutative diagram

domf Cylpdomfq domf

codf

c0 c1

H
f g

In that case, we say that f and g are left homotopic and write f l
„ g.

‚ A right homotopy from f to g consists of a path Pathpcodfq for codf
along with a morphism K : domf Ñ Pathpcodfq such that p0K “ f and
p1K “ g. More concisely, we have a commutative diagram

domf

codf Pathpcodfq codf

K
f g

p0 p1

In that case, we say that f and g are right homotopic and write f r
„ g.

‚ The morphisms f and g are said to be homotopic, if they are both left and
right homotopic. In this case we write f „ g.

‚ f is said to be a homotopy equivalence if there is a morphism f 1 : codf Ñ

domf such that f 1f „ 1domf and ff 1 „ 1codf .

Remark 5.27. A path object for X in C is the same as a cylinder object for X in
the model category Cop. Similarily, the notions of right and left homotopy between
two morphisms f and g are dual. Hence we may restrict ourselves to proving results
about left homotopies and cylinder objects.

By means of our functorial factorizations we may construct a cylinder object
X ˆ I (the product here should be interpreted suggestively only) for any X P C.
Indeed, apply the functorial factorization to the fold map X

š

X Ñ X to obtain a
cofibration X

š

X Ñ XˆI along with a trivial fibration XˆI
„
Ñ X. Dually, there

is a path object XI (this is yet again solely suggestive notation) for X by applying
the other functorial factorization to the diagonal map, and in this case X „

Ñ XI is
a trivial cofibration. In fact, if CylpXq is an arbitrary cylinder object for X, then
there is a weak equivalence CylpXq

„
Ñ B ˆ I compatible with the structure maps

c0
š

c1 and the corresponding weak equivalences:

X
š

X X ˆ I

CylpXq X„

c0
š

c1

c0
š

c1

„h

The morphism h is a lift whose existence is guaranteed by means of the LLP enjoyed
by the fibration c0

š

c1 with respect to the trivial cofibration X ˆ I
„
Ñ X. By the

2-out-of 3 property h is then a weak equivalence. Analogously, there is a weak
equivalence XI „

Ñ PathpXq for any path object PathpXq compatible with the
associated structure maps.

Theorem 5.28 (Whitehead). Let C be a model category. A weak equivalence
between two objects which are both fibrant and cofibrant is a homotopy equivalence.
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Proof. By means of the given functorial factorization in C and the 2-out-of 3 prop-
erty any weak equivalence f in C factors through an object Z as a composition
of a trivial cofibration followed by a trivial fibration. In particular, if domf and
codf are both fibrant and cofibrant, so is Z. Hence it suffices to prove that trivial
(co)fibrations between bifibrant objects are homotopy equivalences. So let f be a
trivial fibration between bifibrant objects (the other case is dual). Then

H domf

codf codf

CofQ fPFib»
f´1

induces a right inverse f´1 for f . To see that f´1 is also a left inverse up to left
homotopy, let Cylpdomfq be any cylinder object for domf , that is, a factorization

domf
š

domf domf

Cylpdomfq

∇

CofQc0
š

c1 σPFib»

and consider the commuting square

domf
š

domf domf

Cylpdomfq codf
fσ

CofQc0
š

c1

f´1f
š

1domf

fPFib»η

which, by construction, admits a lift η : Cylpdomfq Ñ domf which then constitutes
the wanted left homotopy. □

Proposition 5.29. Let C be a model category. Then the following is true:
‚ For X 1 a cofibrant object and X a fibrant object of C, the left and right

homotopy relations coincide and are equivalence relations on CpX 1, Xq.
‚ The homotopy relation on the morphisms of Ccf is an equivalence relation

and is compatible with composition.
‚ A map of Ccf is a weak equivalence if and only if it is a homotopy equiv-

alence.

Proof. See [19] Corollary 1.2.6 and 1.2.7 and Proposition 1.2.8. □

Corollary 5.30. Let C be a model category and let Ccf
„

denote the quotient category
obtained from Ccf by factoring out by the homotopy relation „. Let γ : Ccf ↠

HoCcf and δ : Ccf ↠ Ccf
„

be the corresponding localization and quotient functors.
Then there is a unique isomorphism of categories

Ccf
„

HoCcf–

j

such that jδ “ γ. Furthermore, j is the identity on objects.

Proof. One shows that Ccf {„ satisfies the same universal property as HoCcf –

HoCcf . For details see [19] corollary 1.2.9. □

Remark 5.31. By Corollary 5.30 and Propositon 5.25 we have
Ccf

„
– HoCcf – HoC
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which asserts that, whenever C is a model category, the localized category HoC “

CrW´1
C s is a well-defined category.

In [19] the next result is referred to as the fundamental theorem of model cate-
gories:

Theorem 5.32. Let C be a model category. Denote by γ : C ↠ HoC the canonical
functor, and let L and R be cofibrant and fibrant replacement functors.

‚ There are natural isomorphisms

CpX,Y q

„

CpLRX,LRY q

„
HoCpX,Y q

CpRLX,RLY q

„

CpLX,RY q

„

– –

–

–

where the dotted arrow makes sense and is an isomorphism if and only if
X is cofibrant and Y is fibrant.

‚ The localization functor γ identifies left and right homotopic maps.
‚ Any morphism f in C such that γf is an isomorphism in HoC is a weak

equivalence.

Proof. See [19] Theorem 1.2.10. □

5.3. Quillen Functors and Quillen Adjunctions. We shall introduce the no-
tions of Quillen functors and Quillen adjunctions in this chapter. The material is
based on the corresponding chapters in [19].

As is quite clear from the definition, a model category is a category with extra
homotopical structure. Standard adjunctions between model categories are not
able to translate all the relevant structure from one model category to the other.
The idea of Quillen adjunctions (and Quillen functors in general) is precisely this:
To give us a nice enough notion of adjunctions between model categories which also
preserve the given homotopical information.

Definition 5.33. Let C and D be model categories.
‚ A functor F : C Ñ D is called a left Quillen functor if F is a left adjoint

and preserves cofibrations and trivial cofibrations.
‚ A functor U : D Ñ C is called a right Quillen functor if U is a right adjoint

and preserves fibrations and trivial fibrations.
‚ An adjunction

´

F : C Ñ D, U : D Ñ C, φ : DpF,´q
–

ÝÑ Cp´,Uq

¯

is called a Quillen adjunction if F is a left Quillen functor.

Remark 5.34. Some immediate facts can be deduced:
‚ By Ken Brown’s Lemma 5.17 every left Quillen functor preserves weak

equivalences between cofibrant objects. Dually, every right Quillen functor
preserves weak equivalences between fibrant objects. Thus a left Quillen
functor F : C Ñ D induces a functor HoF : HoCc Ñ HoD. Analogously, a
right Quillen functor U : D Ñ C induces a functor HoU : HoDf Ñ HoC.
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‚ If we have a pair of Quillen adjunctions pF,U, φq : C Ñ D and pF1,U1, φ1q : D Ñ

E, then we can define their composition to be the adjunction
´

F1F : C Ñ E, UU1 : E Ñ C, φφ1
¯

where φφ1 is the composite natural isomorphism with components

EpF1Fc, eq
φ1

ÝÑ DpFc,U1eq
φ

ÝÑ Cpc,UU1eq

Composition of (Quillen) adjunctions is associative and has units.
‚ If pF,U, φq : C Ñ D is a Quillen adjunction, then

pF,U, φqop :“ pU,F, φ´1q : Dop Ñ Cop

is a Quillen adjunction.
‚ Let pF,U, φq be an adjunction C Ñ D as above. The triple pF,U, φq is a

Quillen adjunction if and only if U is a right Quillen functor. Indeed, we
have equivalent lifting problems:

Fpdomfq domg domf Updomgq

ðñ

Fpcodfq codg codf Upcodgq

Ff gD f UgD

So for example, if Ff P CofD for all f P CofC, then Ff has the LLP with
respect to all g P Fib»

D. Thus by using the adjunction, Ug has the RLP
with respect to all f P CofC, and hence Ug P Fib»

C for all g P Fib»
D, as

wanted.

We then also have a good notion of equivalence of model categories:

Definition 5.35. A Quillen equivalence of two model categories C and D is a
Quillen adjunction

C D
F

U

Quillen

%

such that for every cofibrant object c P C and every fibrant object d P D, a
morphism c Ñ Ud is a weak equivalence in C if and only if Fc Ñ d is a weak
equivalence in D.

5.4. Important Model Structures.

5.4.1. Quillen Model Structure. There are several model structures on the category
of simplicial sets. The standard one is usually referred to as the Quillen model
structure.

Definition 5.36. The classical model structure or Quillen model structure on the
category of simplicial sets has the following distinguished classes of morphisms:

‚ Cofibrations are given by all monomorphisms f : X ↣ Y , i.e., fn : Xn Ñ

Yn is an injection for all n P N.
‚ Weak equivalences are weak homotopy equivalences, i.e., morphisms whose

geometric realization is a weak homotopy equivalence of topological spaces.
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‚ Fibrations are given by Kan fibrations, i.e., maps f : X Ñ Y which have
the RLP with respect to all horn inclusions

Λnk X

∆n Y

f

for all 1 ⩽ k ⩽ n.
In order to accentuate that we consider sSet endowed with the Quillen model struc-
ture, we shall sometimes write sSetQuillen.

Remark 5.37. Let us deduce some consequences of the previous definition:
‚ Fibrant objects in the Quillen model structure are exactly Kan complexes:

Λnk X

∆n ∆0

‚ A morphism f : X Ñ Y of fibrant simplicial sets i.e. Kan complexes is a
weak equivalence if and only if it induces isomorphisms on all simplicial
homotopy groups.

‚ All simplicial sets are cofibrant with respect to the Quillen model structure.

5.4.2. Classical Model Structure on Top.

Definition 5.38. The classical model structure or Quillen model structure on Top
has the following distinguished classes of morphisms:

‚ Weak equivalences are the weak homotopy equivalences.
‚ Fibrations are constituted by Serre fibrations:

Fib “ Jm
Top :“

´!

Dn pid,0q
ãÑ Dn ˆ I

)

nPN

¯m

The following result holds:

Theorem 5.39. The adjunction

sSetQuillen TopQuillen

|´|

Π⩽8

%

constitutes a Quillen equivalence.

This will become important once we talk about 8-groupoids.

5.4.3. Thomason Model Structure. The following is based on the Nlab articles
Thomason model structure and Geometric realization of categories.

The category of small categories Cat may also be endowed with a suitable model
structure. For its construction one uses the fully faithful nerve embedding

N : Cat Ñ sSet

along with geometric realization

| ´ | : sSet Ñ Top

Definition 5.40. The composition of functors

|Np´q| : Cat Ñ Top, C ÞÑ |NC|

is referred to as geometric realization of categories.

https://ncatlab.org/nlab/show/Thomason+model+structure#definition
https://ncatlab.org/nlab/show/geometric+realization+of+categories
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Remark 5.41. By the homotopy hypothesis geometric realization of simplicial sets
constitutes a Quillen equivalence between the homotopy theory of simplicial sets
and the homtopy theory of topological spaces. In particular, for a category C the
simplicial set NC is a model for an 8-groupoid (or Kan complex), since it doesn’t
make a difference if we take the geometric realization of NC or of any fibrant
replacement thereof, since these will be homtopy equivalent, e.g.,

|Ex8
pNCq| » |NC|

Recall the barycentric subdivision functor sd and its right adjoint Ex from Ex-
ample 2.32.

Definition 5.42. The Thomason model structure on Cat, denoted CatThomason, is
given by:

‚ A functor F : C Ñ D is a Thomason fibration if and only if Ex2NpFq : Ex2NpCq Ñ

Ex2NpDq is a trivial Kan fibration.
‚ A functor F : C Ñ D is a Thomason weak equivalence if and only if
NF : NC Ñ NC is a weak equivalence in the Quillen model structure
on sSet.

Proposition 5.43. The Quillen model structure on sSet is Quillen equivalent to
the Thomason model structure on Cat which is witnessed by the Quillen equivalence:

sSetQuillen CatThomason

hsd2

Ex2N

%

Proposition 5.44. For a category C, let ∇C be the poset category of 1-simplices
in the nerve NC ordered by inclusion. Then we have

|Np∇Cq| » |NC|

Another important result is the following:

Theorem 5.45 (Quillen Theorem A). Let C,D be categories and let F : C Ñ D be
a functor. If for all d P D the geometric realization |NpF{dq| of the comma category
F{d is contractible, then

NF : NC Ñ ND

is a weak homotopy equivalence.

For even more results and references see the Nlab article Geometric realization
of categories.

5.4.4. Model Structures on Functors. There are two canonical ideas to put model
structures on DC for D a model category and C a small category.

Definition 5.46. Denote by DC “ rC,Ds the functor category of functors C Ñ D.
‚ The projective weak equivalences or projective fibrations are those natural

transformations which are objectwise weak equivalences or fibrations in
D.

‚ The injective weak equivalences or injective cofibrations are those natural
transformations which are objectwise weak equivalences or cofibrations in
D.

‚ This gives rise to two different model structures on DC, if these exist,
which we write as DC

proj and DC
inj. The first of these is referred to as

the projective model structure and the latter is called the injective model
structure.

https://ncatlab.org/nlab/show/geometric+realization+of+categories
https://ncatlab.org/nlab/show/geometric+realization+of+categories


82

5.4.5. Reedy Model Structure. There is a special kind of category, referred to as
Reedy category, which always ensures the existence of a model structure called the
Reedy model structure on the functor category CR for R a Reedy category and C

a model category.

Definition 5.47. A Reedy category is a category R with two wide subcategories
R` and R´ and a total ordering, defined by a degree function deg : ObR Ñ α,
where α is an ordinal number, such that

‚ Every non-identity arrow in R` raises degree.
‚ Every non-identity arrow in R´ lowers degree.
‚ For all objects f P Rr1s there exists a unique f` P pR`qr1s and a unique
f´ P pR´qr1s such that f “ f`f´.

Example 5.48. The simplex category ∆ constitutes a Reedy category:
‚ The degree function is given by

deg : Ob∆ Ñ N, rns ÞÑ n

‚ A morphism rks Ñ rns is in ∆` if and only if it is an injection.
‚ A morphism rks Ñ rns is in ∆´ if and only if it is a surjection.

By switching ∆` and ∆´, we may also realize ∆op as a Reedy category. In fact,
switching R` with R´ yields a Reedy category Rop for any Reedy category R.

Theorem 5.49. If R is a Reedy category and C is a model category, then there is
a canonical induced model structure on the functor category CR, denoted CR

Reedy,
in which the weak equivalences are the objectwise weak equivalences in C.

If the model category C is nice enough we have the following:

Theorem 5.50. Let C be a combinatorial model category and let R be a Reedy
category. Then identity functors induce Quillen equivalences

CR
proj CR

Reedy CR
injQuillen

%

Quillen

%

For more details see the Nlab page Reedy model structure.

5.5. Derived Functors. This subsection is based on the corresponding chapters
in [34] and [19].

We will define homotopy (co)limits as derived functors of a homotopy Kan exten-
sion that satisfy a universal property: the homotopy (co)limit functor is universal
among homotopical approximations to the strict (co)limit functor. Let C be a cat-
egory with weak equivalences and let D be a small diagram category. Then CD

canonically turns into a category with weak equivalences by taking the weak equiv-
alences to be those natural transformations which are objectwise weak equivalences
in C. Let ! : D Ñ ‹ be the unique functor into the terminal category. Then we get
the well known adjunction from Example 3.7:

CD Cconst

lim“Ran!

colim“Lan!

%
%

We will see that the globally defined homotopy limit and colimit are accordingly
the left and right homotopy Kan extension along ! : D Ñ ‹.

Definition 5.51. A homotopical category is a category C equipped with a wide
subcategory W (W has the same objects as C) such that W satisfies the 2-out-of-6

https://ncatlab.org/nlab/show/Reedy+model+structure
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property : For any composable triple of arrows h, g, f if hg and gf are in W, then
so are f, g, h, and hgf . More diagrammatically,

‚ ‚

f, g, h, hgf P W

‚

‚
h

hgPW
WQgf

f

hgf

g

Remark 5.52. It is noteworthy that the 2-out-of 6 property is stronger than (and
therefore implies) the 2-out-of 3 property. Still, it is shown, see [34] Remark 2.1.9,
that the weak equivalences of any model category satisfy the 2-out-of 6 property.
Thus any model category has an underlying homotopical category.

Example 5.53. Any category may be considered as a homotopical category by
simply regarding the underlying minimal homotopical category taking the weak
equivalences to be the isomorphisms in our category. Indeed, the class of isomor-
phisms satisfies the 2-out-of 6 property: For composable h, g, f such that gf and hg
are isomorphisms the map g has a left inverse fpgfq´1. As hg is an isomorphism
g is monic and thus fpgfq´1 must also be the right inverse of g. Thus g is an
isomorphism, which already implies that f, h and hgf must also be isomorphisms.

Definition 5.54. A functor F : C Ñ D between homotopical categories is said to
be homotopical if it preserves weak equivalences, that is, FpWCq Ă WD.

Remark 5.55. By the universal property of the corresponding localizations, a ho-
motopical functor F : C Ñ D induces a unique functor

C D

CrW´1
C s CrW´1

D s

F

γC γD

locpγDFq

commuting with the localizations.

Remark 5.56. Let C and D be homotopical categories. The universal property of
the localization functor γC : C ↠ CrW´1

C s is 2-categorical: A natural transforma-
tion ζ : F Ñ F1 between homotopical functors C Ñ D descends to a unique natural
transformation locpγDζq : locpγDFq Ñ locpγDF

1q. Conversely, a natural transforma-
tion between functors CrW´1

C s Ñ DrW´1
D s descends to a natural transformation

between functors C Ñ DrW´1
D s, but it might not be possible to lift this natural

transformation along γD : D ↠ DrW´1
D s.

Example 5.57. Any functor F : C Ñ C equipped with a natural weak equivalence
to or from the identity functor is homotopical: Indeed, if F „

Ñ 1C is a natural weak
equivalence, then any weak equivalence f is mapped to a weak equivalence Ff by
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the 2-out-of 3 property:

Fdomf domf

Fcodf codf

Ff

„

f

„

As a specific example, consider the functor that maps a space X to the cylinder Xˆ

I, where I “ r0, 1s. This functor is homotopical, because the canonical projections
X ˆ I

„
Ñ X are natural weak equivalences.

Many interesting functors between homotopical categories are not themselves
homotopical however. What are we to do in such situations? Derived functors
are defined to be the closest homotopical approximations of a (non-homotopical)
functor between homotopical categories:

Definition 5.58. Let C and D be homotopical categories with wide subcategories
WC and WD, respectively, and let F : C Ñ D be a functor. Denote by CrW´1

C s

and DrW´1
D s the corresponding localizations (homotopy categories) as defined in

Definition 5.18.
‚ The total left derived functor LF : CrW´1

C s Ñ DrW´1
D s is defined to be

the right Kan extension of γDF along γC:

C D DrW´1
D s

CrW´1
C s

γC

γD

LF:“RanγCγDF

F

‚ The total right derived functor RF : CrW´1
C s Ñ DrW´1

D s is defined to be
the left Kan extension of γDF along γC:

C D DrW´1
D s

CrW´1
C s

γC

γD

RF:“LanγCγDF

F

Remark 5.59. By the universal property of γC, the functor LF may be considered
as a homotopical functor LF : C Ñ DrW´1

D s.

Definition 5.60. Let C and D be homotopical categories, and consider a functor
F : C Ñ D.

‚ A left derived functor of F is a homotopical functor LF : C Ñ D equipped
with a comparison natural transformation ζ : LF Ñ F such that

´

locpγDLFq : CrW´1
C s Ñ DrW´1

D s, γDζ : γDLF Ñ γDF
¯
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constitutes a total left derived functor of F:

C D DrW´1
D s C D DrW´1

D s

“

CrW´1
C s CrW´1

C s

γC

γDF

locpγDLFq
γDζ

LF
γC

F γD

‚ A right derived functor of F is a homotopical functor RF : C Ñ D equipped
with a comparison natural transformation ζ : F Ñ RF such that the data

´

locpγDRFq, γDζ : γDF Ñ γDRF
¯

constitutes a total right derived functor of F:

C D DrW´1
D s C D DrW´1

D s

“

CrW´1
C s CrW´1

C s

γC

γDF

locpγDRFq
γDζ

RF
γC

F γD

Remark 5.61. The functor locpγDLFq in the above definition might seem confusing.
However, after precomposing with γC we get

locpγDLFqγC “ γDLF
yielding a natural transformation

γDζ : locpγDLFqγC Ñ γDF

Remark 5.62. After having had a look at the above definitions, we immediately
realize that total left and right derived functors are unique up to unique isomor-
phisms (these are just Kan extensions after all). On the other hand, how about
uniqueness for left and right derived functors? The expectation of course is that
these are uniquely determined up to weak equivalence. This is indeed the case: If
LF and rLF are two left derived functors for F, then

locpγDLFq – RanγCγDF – locpγDrLFq

and therefore we have a natural isomorphism γDLF – γDrLF, which makes pre-
cise what we mean by uniquely determined up to weak equivalence, since, if C is
saturated (any model category is saturated), that is, any isomorphism in the lo-
calization of D is induced by a weak equivalence (this in particular concerns all
the components of the above natural isomorphism), then the above natural isomor-
phism descends to a natural weak equivalence. There is a second question that one
might want to ask. Namely, what if F : C Ñ D is already homotopical. Then, since
(total) left and right derived functors are thought to be the closest homotopical
approximations to F, they should better agree with F. We postpone answering this
question (see Corollary 5.67).

There is no guarantee for derived functors to always exist in general. However,
there is a quite broad setting in which derived functors exist and admit simple
constructions.

Definition 5.63. Let C and D be homotopical categories.
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‚ A left deformation on C consists of a functor L : C Ñ C together with a
natural weak equivalence l : L „

Ñ 1C.
‚ A right deformation on C consists of a functor R : C Ñ C together with

a natural weak equivalence r : 1C
„
Ñ R.

Remark 5.64. Let us point out some subtleties:
‚ If C admits a left deformation L, then L is homotopical. This follows from

Example 5.57. If CL is any full subcategory of C containing the image
of Q, then the inclusion CL Ñ C and the left deformation L : C Ñ CL
induce an equivalence of categories between CrW´1

C s and CLrWC
´1
L s. This

follows along the same lines as Proposition 5.25. Analogously, if C admits
a right deformation R, then R is homotopical and any full subcategory
CR containing the image of R gives rise to an equivalence of categories
CrW´1

C s – CRrW´1
CR

s

‚ The notion of left and right deformation are inspired by cofibrant and
fibrant replacement functors L,R : C Ñ C along with their natural weak
equivalences l : L „

Ñ 1C and r : 1C
„
Ñ R which always exist if C is a model

category. Therefore, any model category gives rise to both a left and a
right deformation.

Definition 5.65. Let C be a homotopical category.
‚ A left deformation for a functor F : C Ñ D between homotopical cate-

gories consists of a left deformation L for C such that F is homotopical
on an associated subcategory of cofibrant objects, i.e., F is homotopical
on CL where CL is any full subcategory containing the image of L.

‚ A right deformation for a functor F : C Ñ D between homotopical cate-
gories consists of a right deformation R for C such that F is homotopical
on an associated subcategory of fibrant objects, i.e., F is homotopical on
CR where CR is any full subcategory containing the image of R.

Theorem 5.66. Let C and D be homotopical categories.
‚ If F : C Ñ D has a left deformation l : L

„
Ñ 1C, then LF “ FL is a left

derived functor of F with comparison natural transformation Fl : FL Ñ F.
‚ If F : C Ñ D has a right deformation r : 1C

„
Ñ R, then RF “ FR is a right

derived functor of F with comparison natural transformation Fr : F Ñ FR.

Proof. We have to show that for any functor U : CrW´1
C s Ñ DrW´1

D s and any
natural transformation α : UγC Ñ γDF there exists a unique morphism α1 : U Ñ

locpγDFLq such that

UγC γDF

γDFL

α

α1γC
γDFl

commutes. Existence of such a morphism α1 is deduced as follows: The functor
UγC is homotopical and therefore UγCl : UγCQ Ñ UγC is a natural isomorphism.
Naturality of α implies commutativity of the diagram

UγCpcq γDFpcq

UγCpLcq γDFpLcqαLc

UγCplcq γDFplcq

αc
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which in turn yields that α factors through γDFL as

UγC γDF

UγCL

γDFL

pUγClq
´1

αL

γDFl

α

α1γC

where α1 is defined by locpαLpUγClq
´1q. Suppose now that we have yet another

morphism β : U Ñ locpγDFLq such that pγDFlqβγC “ α. We first note that βL
is uniquely determined: Since F is homotopical on any full subcategory of cofi-
brant objects CL, FlL is a natural weak equivalence. Thus γDFqQ is a natural
isomorphism. Naturality implies commutativity of the diagram

UγCL γDFL
2

UγC γDFL

βL

UγCl γDFLl

β

– –

which in turn yields uniqueness of β, since the vertical morphisms are isomorphisms.
□

Corollary 5.67. If F : C Ñ D is a homotopical functor between homotopical cate-
gories, then both the left and right derived functors LF and RF of F exist and they
both agree with F up to weak equivalence.

Proof. Since F : C Ñ D is already homotopical, the identity functor 1C : C Ñ C is
both a left as well as right deformation for F. Hence

LF » F » RF
□

Lemma 5.68. Let F : C Ñ D be a functor between homotopical categories.
‚ If F is left deformable, then its total left derived functor is an absolute left

Kan extension.
‚ If F is right deformable, then its total right derived functor is an absolute

right Kan extension.

Proof. The argument is along the same lines as in Theorem 5.66: Let L : CrW´1
C s Ñ

E be any functor. We have to show that

C D DrW´1
D s E C D DrW´1

D s E

“

CrW´1
C s CrW´1

C s

γC

F L

LlocpγDFLq
γC

F L

RanγC pLγDFq

γDγD

LγDFl
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So let U : CrW´1
C s Ñ E be a functor along with a natural transformation α : UγC Ñ

LγDF. The map UγCl is a natural isomorphism and hence by naturality of α we
observe that α factors through LγDFL as

UγC LγDF

UγCL

LγDFQ

pUγClq
´1

αL

LγDFl

α

α1γC

Showing uniqueness of α1 is analogous as in the proof of Theorem 5.66. □

Lemma 5.69. Consider a pair of functors

D C E
U F

‚ If the right Kan extension RanUF of F along U exists and is absolute, then

EpRanUF, eq : D
op Ñ Set

is an absolute left Kan extension of EpF, eq along U.
‚ If the left Kan extension LanUF of F along U exists and is absolute, then

Epe,LanUFq : D Ñ Set

is an absolute right Kan extension of Epe,Fq along U.

Proof. Since RanUF is assumed to be absolute, the functor Dp´, eq : D Ñ Setop

sends RanUF to a right Kan extension in Setop. Hence, by duality, RanUF is taken
to a left Kan extension of EpF, eq along U in Set. □

The proof of the following result is based on [20] (for an alternative proof which
does not use the (co)end calculus, see [27]):

Theorem 5.70. Let C and D be homotopical categories and let

C D
F

U

%

be a pair of adjoint functors. If F admits an absolute total left derived functor LF
and U admits an absolute total right derived functor RU, then the total derived
functors form an adjunction between the corresponding localized categories:

CrW´1
C s DrW´1

D s

LF

RU

%

Proof. Let us write C„ :“ CrW´1
C s and D„ :“ DrW´1

D s. In the following calcu-
lation we make heavy use of Proposition 3.5, since all Kan extensions involved are
absolute and therefore, in particular, pointwise:

D„pLFγCc
1, γDd

1q –
Lemma 5.69

LanγC pD„pγDF, γDd
1qqpγCc

1q

–

cPC
ż

C„pγCc
1, γCcq ˆ D„pγDFc, γDd

1q

–

cPC
ż

C„pγCc
1, γCcq ˆ

´

dPD
ż

DpFc, dq ˆ D„pγDd, γDd
1q

¯
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–

cPC
ż

dPD
ż

C„pγCc
1, γCcq ˆ Cpc,Udq ˆ D„pγDd, γDd

1q

–

dPD
ż

C„pγCc
1, γCUdq ˆ D„pγDd, γDd

1q

– LanγDpC„pγCc
1, γCUqqpγDd

1q

–
Lemma 5.69

C„pγCc
1,RUγDd

1q

□

Corollary 5.71. Let C and D be model categories. Then any Quillen adjunction

C D
F

U

%
induces a derived adjunction

HoC HoD
LF

RU

%

Proof. The functors F and U are left resp. right deformable by Remark 5.64 and
therefore admit total derived functors by Theorem 5.66. These total derived func-
tors are absolute by Lemma 5.68. Theorem 5.70 then immediately implies the
claim. □

Remark 5.72. In fact, it is not needed that the functors F and U, in Corollary 5.71,
form a Quillen adjunction. Theorem 5.70 implies the same claim by just demanding
that F is homotopical on the subcategory of cofibrant objects, while U has to be
homotopical on the subcategory of fibrant objects.

One then obtains a neat characterization of Quillen equivalences:

Proposition 5.73 ([19] Proposition 1.3.13). A Quillen adjunction pF,U, φq : C Ñ

D is a Quillen equivalence if and only if The induced adjunction

HoC HoD
LF

RU

%

is an equivalence of categories.

5.6. Model Categories with extra Structure. The following chapter is based
on the Nlab-entry derived hom-functor.

We have seen what constitutes a model category and what it means for a cate-
gory to be (symmetric) monoidal. Merging these two notions to obtain a concept
of monoidal model category should result in a symbiosis of the monoidal structure
with the model structure. Roughly put, a monoidal model category should be a
model category which is also a closed monoidal category in a compatible way. Be-
fore getting to the precise definition let us briefly introduce a necessary preliminary
notion:

Definition 5.74. Let b : E1 ˆE2 Ñ E3 be a functor and suppose E3 has pushouts.
For morphisms f in E1 and f 1 in E2, the pushout product f□f 1 is the morphism

pdomf b codf 1q
š

domfbdomf 1

pcodf b domf 1q codf b codf 1

https://ncatlab.org/nlab/show/derived+hom-functor
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out of the pushout induced from the commuting diagram

domf b domf 1 codf b domf 1

domf b codf 1 domf b codf 1
š

domfbdomf 1

codf b domf 1

codf b codf 1

1domfbf 1

fb1domf 1

fb1codf 1

1codfbf 1

D!f□f 1

Since model categories are cocomplete (and complete), they allow for pushouts.
Therefore, the pushout product for a pair of morphisms in C is well-defined.

Definition 5.75. A symmetric monoidal model category is a model category C

equipped with a closed symmetric monoidal structure pC,b,1, λ, ρq such that the
following compatibility conditions are satisfied:

‚ Pushout-product axiom: For any pair of cofibrations f and f 1 in C their
pushout-product f□f 1 with respect to the tensor functor b : C ˆ C Ñ C

is itself a cofibration, which, furthermore, is trivial if f or f 1 is trivial.
‚ Unit axiom: For every cofibrant object X and every cofibrant resolution
L1

l1
ÝÑ 1 of the tensor unit 1, the resulting morphism

L1 bX 1 bX X
l1b1X –

is a weak equivalence.

Remark 5.76. Some remarks are in order:
(i) For c P C a cofibrant object, the pushout-product axiom implies that

the functor c b ´ : C Ñ C preserves cofibrations and trivial cofibrations.
Indeed, assume H Ñ c to be a cofibration. Recall that the symmetric
monoidal category C is closed, i.e., ´ b x has a right adjoint rx,´s and
thus preserves colimits for all objects x P C. Therefore, the diagram which
induces the map pH Ñ cq□f 1 in the above definition of the pushout-
product map boils down to

H cb domf 1

H cb domf 1

cb codf 1

fb1domf 1

pHÑcqb1codf 1

1cbf 1

D!pHÑcq□f 1

since Hbdomf 1 – H – Hbcodf 1. Thus the (unique) induced morphism,
which by assumption is a cofibration, amounts to pH Ñ cq□f 1 “ 1c b f 1.
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But this asserts that cb´ : C Ñ C is a left Quillen functor. In particular,
this tells us that the adjunction

C C

cb´

rc,´s

%

is, in fact, a Quillen adjunction.
(ii) As a special case of the preceding remark, if 1 is cofibrant then the unit

axiom is already implied by the pushout-product axiom: In fact, in this
case L1 Ñ 1 is a weak equivalence between cofibrant objects and such
morphisms are preserved by functors that preserve trivial cofibrations (this
is Ken Brown’s Lemma 5.17).

(iii) One can actually generalize the above definition further. This leads to the
concept of a left Quillen bifunctor : Let E1,E2,E3 be model categories. A
functor b : E1 ˆE2 Ñ E3 is called a left Quillen bifunctor if

‚ it satisfies the pushout-product axiom.
‚ it preserves colimits separately in each variable.

Example 5.77. Consider the category of simplicial sets sSetQuillen endowed with
the Quillen model structure. Fix cofibrations (monomorphisms in our case) f and
f 1 in sSetQuillen and consider pushout square

domf ˆ domf 1 codf ˆ domf 1

domf ˆ codf 1 pdomf ˆ codf 1q
š

domfˆdomf 1

pcodf ˆ domf 1q

codf ˆ codf 1

1ˆf 1

fˆ1

f□f 1
“pfˆ1q

š

p1ˆf 1
q

fˆ1

1ˆf 1

We note that the pushout-product may be explicitly computed as the map pf ˆ

1q
š

p1 ˆ f 1q and this map is certainly again a cofibration (monomorphism) if f
and f 1 are cofibrations. For the case where f is a trivial cofibration and f 1 is a
cofibration, see Proposition 4.2.8 in [19]. Similar arguments work to show that the
injective model structure psSetC

op

Quillenqinj constitutes a monoidal model category.

We shall continue with yet another notion which builds on the previous ones.
Before doing so however, let us discuss the dual notion of the pushout-product:

Definition 5.78. Let p´,´q : E1 ˆ E2 Ñ E3 be a functor and suppose E3 has
pullbacks. For morphisms f P E1 and f 1 P E2, the pullback-powering f 1□f is the
morphism

pdomf, domf 1q pcodf, domf 1q ˆpdomf,codfq pdomf, codf 1q
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into the pullback induced from the diagram

pdomf, domf 1q

pcodf, domf 1q ˆpdomf,codfq pdomf, codf 1q pdomf, codf 1q

pcodf, domf 1q pcodf, codf 1q

D!f 1□f

pf,1codf 1 q

p1codf ,f
1
q

pf,1domf 1 q

p1domf ,f
1
q

Definition 5.79. Let V be a monoidal model category. A V-enriched model
category is a V-enriched category C which is both tensored and cotensored over V
and which has the structure of a model category (the underlying category C0 is a
model category) such that the following compatibility condition is satisfied:

‚ Pullback-powering axiom: For every cofibration f P C and every fibration
f 1 P C, the induced pullback-powering morphism f 1□f (with respect to
the functor Cp´,´q : Cop ˆC Ñ V) is a fibration, which, furthermore, is
trivial if f or f 1 is trivial.

Remark 5.80. The pullback-powering axiom, as in the above definition, is equiva-
lent to the copower being a left Quillen bifunctor (it satisfies the pushout product
axiom).

Any monoidal model category is in fact an enriched model category:

Proposition 5.81. Any monoidal model category is an enriched model category
over itself, via the enrichment of its underlying closed monoidal category.

Proof. In order to prove this we shall make use of the Joyal-Tierney calculus. For
this we shall use the notation

‚ p´q m p´q for the lifting property,
‚ p´q□p´q for the pushout-product,
‚ p´q□p´q for the pullback-powering.

We then have the following logical equivalences:

Cof□Cof Ă Cof ðñ Cof□Cof m Fib»
ðñ Cof m pFib»

q□Cof ðñ pFib»
q□Cof Ă Fib»

Cof□Cof»
Ă Cof»

ðñ Cof□Cof»
m Fib ðñ Cof m Fib□Cof»

ðñ Fib□Cof»

Ă Fib»

Cof□Cof»
Ă Cof»

ðñ Cof□Cof»
m Fib ðñ Cof»

m Fib□Cof
ðñ Fib□Cof

Ă Fib

The statements on the far left constitute the pushout product axiom, while the
statement on the far right yield the pullback-powering axiom. This shows equiv-
alence of both these axioms and therefore the claim follows. For more details on
the Joyal-Tierney calculus see the Nlab Enriched model category Example 4.1. and
Joyal-Tierney calculus. □

Example 5.82. Proposition 5.81 leads to an onslaught of examples.
‚ The model category sSetQuillen is a monoidal model category and therefore,

in particular, an enriched model category.

https://ncatlab.org/nlab/show/enriched+model+category
https://ncatlab.org/nlab/show/Joyal-Tierney+calculus
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‚ The injective (or projective) model structure on simplicial presheaves, that
is, psSetC

op

Quillenqinj (or psSetC
op

Quillenqproj) is a monoidal model category, and
therefore an enriched model category.

Lemma 5.83. Let C be a V-enriched model category.
‚ If c P C is a cofibrant object, then the enriched hom-functor out of c

Cpc,´q : C Ñ V

preserves fibrations and trivial fibrations.
‚ If rc P C is a fibrant object, then the enriched hom-functor into rc

Cp´,rcq : Cop Ñ V

sends cofibrations and trivial cofibrations in C to fibrations and trivial
fibrations, respectively, in V.

Proof. Let us suppose first that H Ñ c is a cofibration. Since C is tensored and
cotensored over V it follows that

CpH,´q – ‹, Cp´, ‹q – ‹

Indeed, for the first of these identities we calculate

CpH, xq – CpH b H, xq – VpH,CpH, xqq – ‹

where the first isomorphism in the above chain of morphisms follows from the fact
that Hb´ preserves colimits (since it is a left adjoint), while the third isomorphism
follows from the fact that Vp´,CpH, xqq turns colimits to limits. The other identity
follows analogously. Having gathered all that knowledge, the defining diagram for
f 1□pHÑcq boils down to

Cpc,domf 1q

Cpc, codf 1q Cpc, codf 1q

H H

D!f 1□pHÑcq

f‹

f 1
‹

But this means that the (trivial) fibration f 1□pHÑcq equals f 1
‹ “ Cpc, fq, as wanted.

□

Finally, we are ready to define a derived version of the enriched hom-functor:
Let L,R : C Ñ C be cofibrant and fibrant replacement functors along with the
corresponding natural weak equivalences l : L „

Ñ 1C and r : 1C
„
Ñ R. The model

category Cop ˆ C then has a fibrant replacement functor

Lop ˆR : Cop ˆ C Ñ pCop ˆ Cqf “ pCcq
op ˆ Cf

along with a natural weak equivalence

lop ˆ r : Lop ˆR
„
Ñ 1CopˆC
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Lemma 5.83 along with Ken Brown’s Lemma 5.17 then shows that the enriched
hom-bifunctor Cp´,´q is homotopical if restricted to the full subcategory pCop ˆ

Cqf . Thus, Cp´,´q admits a right deformation. Therefore the dual version of
Theorem 5.66 may be applied to the enriched hom-bifunctor Cp´,´q : Cop ˆ C Ñ

C, which guarantees the existence of the corresponding right derived functor:

Definition 5.84. Let C be an enriched model category. The enriched hom-functor
Cp´,´q : Cop ˆ C Ñ C admits a right derived functor

RHom : Cop ˆ C ÝÑ C

referred to as the (right) derived hom-functor.

Remark 5.85. In the setting of cofibrant and fibrant replacement functors L,R : C Ñ

C

RHompX,Y q » CpLX,RY q

for all objects X,Y P C.

5.6.1. Simplicially Enriched Model Categories.

Definition 5.86. A cartesian closed monoidal category is a cartesian closed cate-
gory C equipped with a model structure such that the following axioms are satisfied:

‚ Pushout-product axiom,
‚ Pullback-powering axiom,
‚ Unit axiom.

Example 5.87. The category of simplicial sets endowed with the Quillen model
structure sSetQuillen is a cartesian closed monoidal category.

Definition 5.88. A simplicial model category is an enriched model category where
the enriching category is given by the cartesian closed model category sSetQuillen
(the category of simplicial sets endowed with the Quillen model structure).

Example 5.89. Consider the model category psSetC
op

Quillenqinj. The underlying cat-
egory is sSet-enriched, that is, a simplicially enriched category. In fact, this even
yields a simplicial model category.

Corollary 5.90. Let C be a simplicial model category. If c P C is cofibrant and
rc P C is fibrant, then Cpc,rcq is fibrant in sSetQuillen, that is, Cpc,rcq is a Kan
complex.

Proof. Follows immediately from Lemma 5.83. □

For more details and examples of simplicial model categories see the Nlab article
Simplicial model category.

5.7. Homotopy Limits and Colimits. Let us get back to the adjunction which
we had in the very beginning of 5.5:

CD Cconst

lim“Ran!

colim“Lan!

%
%

If C is a model category (or any homotopical category really) and D is small, then
view CD as a homotopical category with weak equivalences being those natural
transformations which are objectwise weak equivalences in C.

Definition 5.91. Let C be a model category and D be small.

https://ncatlab.org/nlab/show/simplicial+model+category#definition
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‚ The homotopy limit functor, if it exists, is defined by the right derived
functor of lim

D
:

holim
D

:“ R lim
D

: CD Ñ C

‚ The homotopy colimit functor, if it exists, is defined by the left derived
functor of colim

D
:

hocolim
D

:“ L colim
D

: CD Ñ C

Remark 5.92. If both homotopy limit and colimit functors exist, then by Theorem
5.70 these give rise to adjunctions

CDrW´1
CD s HoC CDrW´1

CD s HoC
Lcolim“locpγCLcolimq

Rconst“locpγ
CDRconstq

Lconst“locpγ
CDLconstq

Rlim“locpγCRlimq

%%

Example 5.93. Let Xi be a collection of objects in a model category C indexed
by some index set I. Their homotopy product is given as

holim
iPI

Xi »
ź

iPI

RXi

for a fibrant replacement functor R : C Ñ C. Analogously, their homotopy coprod-
uct is given by

hocolim
iPI

Xi »
ž

iPI

LXi

for a cofibrant replacement functor L : C Ñ C.

5.7.1. Homotopy (Co)continuous functors. Just like for ordinary limits and colim-
its, there should exist a notion of (homotopy) continuity and cocontinuity.

Definition 5.94. Consider the homotopical category CD (with objectwise weak
equivalences) and suppose we are given a functor F : C Ñ C1, where C,C1 are
homotopical categories.

‚ The functor F is said to be homotopy continuous, if F preserves homotopy
limits, that is, for each U P CD we have

Fpholim
D

Uq » holim
D

pFUq

‚ The functor F is said to be homotopy cocontinuous, if F preserves homotopy
colimits, that is, for each U P CD we have

Fphocolim
D

Uq » hocolim
D

pFUq

Proposition 5.95 (Proposition 4.10 [1]). Left derived functors of left Quillen func-
tors preserve homotopy colimits and right derived functors of right Quillen functors
preserve homotopy limits.

Proof. Suppose we are given a Quillen adjunction

C D
F

U

%

then we get an induced Quillen adjunction

C
J
inj D

J
inj

F‹

U‹

%
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We may therefore look at the commutative diagram of left Quillen functors

C
J
inj D

J
inj

C D

const const

F

F‹

which induces a commutative diagram

HoCJ
inj HoDJ

inj

HoC HoD

Lconst Lconst

LF

LF‹

which yields commutativity of the diagram of right adjoints

HoCJ
inj HoDJ

inj

HoC HoD

holim
J

holim
J

RU‹

RU

which verifies that right derived functors of right Quillen functors indeed preserve
homotopy limits. The other case is formally dual. □

5.8. Homotopy (Co)Ends. The following is based on [2].

Recall the adjunction from Remark 2.26 along with the dual statement about ends:

CDop
ˆD C C CDop

ˆD

D
ş

ś

Dp´,´q

:“Dp´,´q⋔´

š

Dp´,´q

:“Dp´,´qd´

ş

D

% %

By the end of this section we will have established the end as a right Quillen functor
(nice pun, eh?) and thereby laying the groundwork for the notion of a homotopy
end, i.e., the right derived functor of

ş

D

. Let us start more generally and consider

the following adjunction:

CD CD1

U‹

U!

U‹

%
%

from Proposition 3.2, where we altered the notation considerably: U! :“ LanU and
U‹ :“ RanU. Recall from chapter 5.4 that the functor category CD, where C is
a model category and D is any category, may give rise to two canonical model
structures, which may or may not exist:

‚ The projective model structure CD
proj, where weak equivalences and fibra-

tions are defined componentwise.
‚ The injective model structure CD

inj, where weak equivalences and cofibra-
tions are defined componentwise.
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Proposition 5.96. Let C be a category, and U : D Ñ D1 be a functor. The
adjunctions

CD
proj CD1

proj CD1

inj CD
inj

U!

U‹

U‹

U‹

% %

both constitute Quillen adjunctions, if the respective model structures exist.

Proof. We only need to verify that U‹ both defines a left as well as right Quillen
functor. But this is immediate, since, for example, if ψ is a fibration in CD1

proj
then the resulting natural transformation U‹ψ “ ψU has only fibrations of C as
components. Therefore, U‹ψ is a fibration. □

Definition 5.97. Let C be a model category and let D,D1 be categories.
‚ A (trivial) simple projective cofibration is a morphism in CD of the form

ž

Dpd,´q

f :
ž

Dpd,´q

domf Ñ
ž

Dpd,´q

codf

for some (trivial) cofibration f in C and some object d P D.
‚ A (trivial) simple injective fibration is a morphism in CD of the form

ź

Dp´,dq

f :
ź

Dp´,dq

domf Ñ
ź

Dp´,dq

codf

for some (trivial) fibration f in C and some object d P D.
The names given in the above definitions are justified by the following:

Corollary 5.98. Let C be a model category, and let U : D Ñ D1 be a functor.
‚ Any (trivial) simple projective cofibration is a (trivial) cofibration in CD

proj.
‚ Any (trivial) simple injective fibration is a (trivial) fibration in CD

inj.
‚ The left Kan extension U! : C

D
proj Ñ CD1

proj preserves (trivial) simple pro-
jective cofibrations, that is,

U!p
ž

Dpd,´q

fq “
ž

D1pUd,´q

f

‚ The right Kan extension U‹ : C
D
inj Ñ CD1

inj preserves (trivial) simple injec-
tive fibrations, that is,

U‹p
ź

Dp´,dq

fq “
ź

Dp´,Udq

f

Proof. Fix some object d P D and consider the inclusion functor tdu
ι

ãÑ D of the
subcategory tdu with only one object. By Proposition 5.96 the left Kan extension
ι! : C

tdu

proj – C Ñ CD
proj is left Quillen and therefore preserves (trivial cofibrations).

Hence, for a (trivial) cofibration f in C the morphism

ι!f “

tdu
ż

Dpd,´q d f –
ž

Dpd,´q

f

is a (trivial) cofibration. Moreover, applying Kan extensions to the diagram

tdu D

tUdu D1

U

and using that Kan extensions respect compositions yields the remaining claim
about simple projective cofibrations. The remaining claims follow by duality. □
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Corollary 5.99. Let const : C Ñ CD be the constant diagram functor.
‚ If CD

proj exists, then

CD
proj C

colim

const

%

is a Quillen adjunction.
‚ If CD

inj exists, then

C CD
inj

const

lim

%

is a Quillen adjunction.

Proof. Apply Proposition 5.96 to the functor D Ñ ‹. □

Finally we are ready to prove the following:

Theorem 5.100. Let C be a model category and D be a category. Regard CDop
ˆD

as a model category in any of the following ways (provided these model structures
exist):

‚ CDop
ˆD “ pCDop

projq
D
inj

‚ CDop
ˆD “ pCD

projq
Dop

inj

‚ CDop
ˆD “ CDop

ˆD
Reedy if D is Reedy.

Then the end functor
ż

D

: CDop
ˆD Ñ C

is a right Quillen functor.

Proof. We shall only prove the result for the case CDop
ˆD “ pCDop

projq
D
inj. The second

case then follows by duality and the third case is shown in [2] Theorem 4.1. It
suffices to check that the left adjoint

ž

Dp´,´q

%

ż

D

takes (trivial) cofibrations in C to (trivial) cofibrations in pCDop

projq
D
inj. If f is a

(trivial) cofibration in C, then the map
ž

Dp´,´q

f :
ž

Dp´,´q

domf Ñ
ž

Dp´,´q

codf

must be a projective (trivial) cofibration objectwise. However, for a fixed object
d P D, the map

ž

Dp´,dq

f :
ž

Dp´,dq

domf Ñ
ž

Dp´,dq

codf

is a simple (trivial) projective cofibration in CDop
and therefore the claim follows

from Corollary 5.98. □

Recall the following definition:

Definition 5.101. Let E1,E2,E3 be model categories.
‚ A functor b : E1 ˆE2 Ñ E3 is called a left Quillen bifunctor if

– it satisfies the pushout-product axiom.
– it preserves colimits separately in each variable.

‚ A functor p´,´q : E1 ˆE2 Ñ E3 is called a right Quillen bifunctor if
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– it satisfies the pullback-powering axiom.
– it preserves limits separately in each variable.

Lemma 5.102. Let E1,E2 and E3 be model categories.
‚ Any left Quillen bifunctor b : E1 ˆ E2 Ñ E3 gives rise to left Quillen

functors e1 b ´ : E2 Ñ E3 and ´ b e2 : E1 Ñ E3 for all e1 P E1 and for all
e2 P E2.

‚ Any right Quillen bifunctor p´,´q : E1ˆE2 Ñ E3 gives rise to right Quillen
functors pe1,´q : E2 Ñ E3 and p´, e2q : E1 Ñ E3 for all e1 P E1 and for all
e2 P E2.

Proof. The same arguments as in Remark 5.76 work to show that any left Quillen
bifunctor indeed gives rise to two functors e1 b ´ and ´ b e2 which both preserve
cofibrations and trivial cofibrations. These two functors then furthermore fit into an
adjunction since the are both cocontinuous (by assumption). Indeed, by Theorem
3.10 it suffices to check that Lane1b´1 and Lan´be21 both exist and are preserved
by e1 b ´ and ´ b e2, respectively. Existence follows immediately from the fact
that model categories are cocomplete by definition. Preservation is a quick coend
calculation:

e1 b Lane1b´1 – e1 b

e
ż

E3pe1 b e,´q d e

–

e
ż

e1 b pE3pe1 b e,´q d eq

–

e
ż

E3pe1 b e,´q d pe1 b eq

– Lane1b´pe1 b ´q

Analogously for ´ b e2. This proves that both e1 b ´ and ´ b e2 are left Quillen
functors. The claim regarding right Quillen bifunctors follows formally by duality.

□

For C a combinatorial simplicial model category (C is nice enough) and D

any simplicially enriched category the projective and injective model structures on
CD both exist and each of these themselves come equipped with a combinatorial
simplicial model structure. This ensures the existence of cofibrant replacement
functors

Lproj : C
D
proj Ñ CD

proj, Linj : C
D
inj Ñ CD

inj

That C is a simplicial model category moreover ensures that it is tensored over sSet

d : C ˆ sSet Ñ C

and that the tensoring is a left Quillen bifunctor.

Proposition 5.103 (Remark A.2.9.27 in [25]). Suppose that C and D are combi-
natorial model categories and let J be an arbitrary small category.

‚ Then any left Quillen bifunctor b : C ˆ D Ñ E induces left Quillen bi-
functors

J
ż

´ b ´ : CJ
proj ˆ D

Jop

inj Ñ E,

J
ż

´ b ´ : CJ
inj ˆ D

Jop

proj Ñ E
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‚ Then any right Quillen bifunctor t´,´u : CˆD Ñ E induces right Quillen
bifunctors

ż

J

t´,´u : CJ
proj ˆ D

Jop

proj Ñ E,

ż

J

t´,´u : CJ
inj ˆ D

Jop

inj Ñ E

Proof. The above functor is certainly cocontinuous in each of the two variables (by
assumption). Therefore, it suffices to prove that any projective cofibration f in
C

J
proj and any injective cofibration f 1 in D

Jop

inj , the induced map
J
ż

domf b codf 1
ž

J
ş

domfbdomf 1

J
ż

codf b domf 1 f□f
1

ÝÑ

J
ż

codf b codf 1(3)

is a cofibration in E which is trivial if either f or f 1 is trivial. It suffices to check
this (see [25]) that this holds for all simple projective cofibrations f of the form

ž

Jpj,´q

c ÝÑ
ž

Jpj,´q

c1

But then the arrow (3) boils down to

pcb codf 1pjqq
ž

cbdomfpjq

pc1 b domf 1pjqq ÝÑ c1 b codf 1pjq(4)

since, for example,

E
´

rjPJ
ż

ž

Jpj,rjq

f b codf 1prjq, e
¯

–

ż

rjPJ

Ep
ž

Jpj,rj

cb codf 1prjq, eq

–

ż

rjPJ

SetpJpj,rjq, Epcb codf 1prjq, eqq

– SetJpJpj,´q, Epcb codf 1, eqq

– Epcb codf 1pjq, eq

and therefore
rjPJ
ż

ž

Jpj,rjq

cb codf 1prjq – cb codf 1pjq

and analogously for the other components in equation (3). But then (4) readily
shows that if f is a cofibration in C and the map domf 1pjq Ñ codf 1pjq is a cofibra-
tion in D, the f□f 1 is a cofibration in E (since b is a left Quillen bifunctor) which
is trivial if either f or f 1 is trivial. The remaining claims may be found in [36]. □

Theorem 5.104. Let C be a combinatorial simplicial model category and let d : sSetˆ
C Ñ C and t´,´u : sSetop ˆ C Ñ C denote the tensoring and cotensoring of C
over sSet, respectively.

‚ The homotopy colimit of F : D Ñ C is given by
D
ż

Linjp‹q d LprojpFq » hocolim
D

F »

D
ż

Lprojp‹q d LinjpFq

where Lproj and Linj are cofibrant resolutions for the respective model
structures (note that Linj on the far left is not the same as Linj on the
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far right since the first corresponds to the model category sSetD
op

inj and the
second corresponds to CD

inj - similarily for Lproj and below).
‚ The homotopy limit of F : D Ñ C is given by

ż

D

tRinjp‹q, RinjpFqu » holim
D

F »

ż

D

tRprojp‹q, RprojpFqu

where Rinj and Rproj are fibrant resolutions for the respective model struc-
tures.

Proof. We have

Cp‹ dX,Y q – Mapp‹,CpX,Y qq – CpX,Y q

for all X,Y P C (where Mapp´,´q is the internal hom in sSet) and hence

‹ d ´ – 1C

From this we immediately infer that
D
ş

‹ d p´q – colim
D

. Since this is a left Quillen
functor, we may derive it to find:

hocolim
D

“ L
D
ż

‹ d p´q “

D
ż

‹ d Linjp´q

But then since
D
ż

p´q d p´q

is a left Quillen bifunctor (by Proposition 5.103), the weak equivalence Lprojp‹q
»
Ñ ‹

induces a natural weak equivalence
D
ż

Lprojp‹q d Linjp´q »

D
ż

‹ d Linjp´q

by Ken Brown’s Lemma 5.17. Since homotopy colimits are unique up to a con-
tractible choice, that is, up to weak equivalence, this yields the claim:

hocolim
D

»

D
ż

Lprojp‹q d Linjp´q

□

Corollary 5.105. Every simplicial set X P sSet is the homotopy colimit over its
cells. More precisely, for a simplicial set X we may consider the bisimplicial set
constpXq which is given by the composition of functors

∆op Set

sSet

X

constpXq

where π : ∆ Ñ ‹ is the unique functor into the terminal category and π‹ is the
induced precomposition functor Set‹

– Set Ñ sSet. If then sSet∆
op

inj is endowed
with the injective model structure (with respect to the Quillen model structure on
sSet), then the homotopy colimit over constpXq is weakly equivalent to the original
simplicial set X:

hocolim
∆op

constpXq » X
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Proof. We have

hocolim
∆op

constpXq »

∆op
ż

Lp‹qn dXn

where Lp‹q : ∆ Ñ sSet is a cofibrant resolution of the point ‹, that is, Lp‹qn
»
Ñ ‹

and Lp‹qn is cofibrant for all n P N. But the Yoneda embedding よ∆ : ∆ Ñ sSet is
such a cofibrant resolution: The cofibrancy condition is clear, since any simplicial
set is cofibrant. For the claim about the objectwise weak equivalences we note that
there is a unique morphism ∆n Ñ ‹ for every n. For the corresponding homotopy
groups we then have

πkp|∆n|, xq ÝÑ πkp‹, ‹q “ t0u

which is an isomorphism for all k P N. Thus ∆n »
Ñ ‹ for all n. Putting all the

pieces together we therefore obtain

hocolim
∆op

constpXq »

∆op
ż

∆n dXn – X

□

5.8.1. Bar and Cobar Construction. The following chapter is based on the corre-
sponding section in [34].

The preceding formulas for homotopy limits and colimits do not seem very ap-
pealing. Calculating these Kan extensions concretely is nigh impossible. However,
there are wondrous mathematical machineries that one may employ at this point.
These are called the bar and cobar constructions.

Definition 5.106. Let C be a simplicially enriched tensored and cotensored cate-
gory.

‚ The two-sided simplicial bar construction for small diagram functors U : Dop Ñ

sSet and F : D Ñ C is a simplicial object B‚pU,D,Fq in C whose n-
simplices are defined by the coproduct

BnpU,D,Fq :“
ž

sPDrns

Usn d Fs0

‚ The bar construction is the geometric realization of the simplicial bar
construction

BpU,D,Fq :“ |B‚pU,D,Fq| :“

∆op
ż

∆n dBnpU,D,Fq

Remark 5.107. The unique maps ∆n Ñ ‹ collect into a natural transformation
よ∆ Ñ ‹. Applying the functor

´ d∆op B‚pU,D,Fq :“

∆op
ż

p´q dBnpU,D,Fq

induces a map

BpU,D,Fq Ñ U dD F :“

D
ż

U d F

where the codomain of this map is referred to as the functor tensor product of U
and F. In this sense, the two-sided bar construction is a fattened up version of the
functor tensor product.
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Example 5.108. If C “ Set, then B‚p‹,D, ‹q boils down to the nerve of the
category D, that is,

Bnp‹,D, ‹q “
ž

sPDrns

‹ d ‹ – Drns “ NDn

Example 5.109. Let G be a group and consider it as a one-object category. The
classifying space of G, commonly denoted BG, is defined to be the geometric real-
ization of the simplicial object Bnp‹, G, ‹q “ Gn.

Example 5.110. We may consider the objects BpDp´, dq,D,Fq P C in the special
case where U is a representable functor. This depends functorially on d P D, so we
may define a functor

BpD,D,Fq : D Ñ C, d ÞÑ BpDp´, dq,D,Fq

In particular, by allowing F to vary we obtain a functor BpD,D,´q : CD Ñ CD.

Lemma 5.111. We have natural isomorphisms

B‚pDp´, dq,D, ‹q – NpD{dq, B‚p‹,D,Dpd,´qq – Npd{Dq

and hence, in particular, there are natural isomorphisms B‚pD,D, ‹q : NpD{´q : D Ñ

sSet and B‚p‹,D,Dq – Np´{Dq : Dop Ñ sSet.

Proof. We have to establish a natural bijection

NpD{dqn “ Funprns,D{dq Ñ BnpDp´, dq,D, ‹q “
ž

sPDrns

Dpsn, dq

A functor f : rns Ñ D{d is nothing more than the information of a commutative
diagram

s0 s1 s2 . . . sn

d

f1 fn

rf

f2

But this is completely determined by only the information of the n-tuple of arrows

s0
f1
Ñ . . .

fn
Ñ sn along with the map sn

rf
Ñ d. Thus, by forgetting the dotted arrows

above, we obtain a natural bijection

NpD{dqn Ñ BnpDp´, dq,D, ‹q

The other isomorphism is constructed analogously. □

We shall dualize the bar construction to arrive at the cobar construction. Be-
fore doing that, let us introduce some new notions. In the presence of a cotensor
t´,´u : sSetop ˆ C Ñ C, the functor cotensor product or sometimes functor hom
of U : D Ñ sSet and F : D Ñ C is the end

tU,FuD :“

ż

dPD

tUd,Fdu

Then if C is cotensored over sSet, by means of t´,´u, then the totalization of a
cosimplicial object X‚ : ∆ Ñ C is defined by

TotX‚ :“ tよ∆, X
‚u∆ “

ż

∆

t∆n, Xnu

The cosimplicial cobar construction is then a fattened up version of the functor
cotensor product.
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Definition 5.112. Let C be complete and cotensored over sSet and let F : D Ñ C

and U : D Ñ sSet be small diagram functors.
‚ The cosimplicial cobar construction C‚pU,D,Fq is a cosimplicial object in
C which has n-simplices

CnpU,D,Fq :“
ź

sPDrns

tUs0,Fsnu

‚ The cobar construction CpU,D,Fq is the totalization of the cosimplicial
cobar construction, i.e.,

CpU,D,Fq :“ tよ∆, C
‚pU,D,Fqu∆ “

ż

∆

t∆n, CnpU,D,Fqu

Theorem 5.113. Let C be a simplicially enriched model category with cofibrant
replacement functor L and fibrant replacement functor R.

‚ The functor

BpD,D, L´q : CD Ñ CD

gives rise to a left deformation for colim
D

: CD Ñ C.
‚ The functor

BpD,D, R´q : CD Ñ CD

gives rise to a right deformation for lim
D

: CD Ñ C.

Proof. See Theorem 5.1.1. in [34]. □

Corollary 5.114. If C is a simplicial model category and D is any small category,
then the functors colim

D
, lim

D
: CD Ñ C admit left and right derived functors, denoted

hocolim
D

and holim
D

, which are given by

hocolim
D

:“ L colim
D

» Bp‹,D, L´q, holim
D

:“ R lim
D

» Cp‹,D, R´q

Proof. By Theorem 5.113 and Theorem 5.66 we have

L colim
D

» colim
D

BpD,D, L´q » ‹ dD BpD,D, L´q

But then

‹ dD BpD,D, L´q » Bp‹ dD D,D, L´q » Bp‹,D, L´q

(for details see [34] Corollary 5.1.3.). Analogously,

R lim
D

» lim
D
CpD,D, R´q » t‹, CpD,D, R´quD » Cp‹,D, R´q

□

Example 5.115. The homotopy colimit of the terminal functor ‹ : D Ñ C is
Bp‹,D, ‹q, which is isomorphic to the geometric realization of the nerve of D. In
the case where D is a 1-object groupoid, that is, a group G, this space

BG :“ Bp‹, G, ‹q – Bp‹ dG G,G, ‹q – ‹ dG BpG,G, ‹q “: colim
G

EG

is called the classifying space of G. More generally, Bp‹,D, ‹q is referred to as the
classifying space of the category D.



105

Theorem 5.116 ([34] Theorem 6.6.1). Let F : D Ñ C be any diagram in a complete
and cocomplete, tensored, cotensored and simplicially enriched category C. Then
there are natural isomorphisms

Bp‹,D,Fq – Np´{Dq dD F, Cp‹,D,Fq – tNpD{´q,FuD

In particular, the homotopy colimit of a pointwise cofibrant diagram F can be com-
puted by the functor tensor product with Np´{Dq. Dually the homotopy limit of
a pointwise fibrant diagram can be computed by the functor cotensor product with
NpD{´q.

Proof. We will prove the result by means of some coend calculus. By Fubini’s
Theorem for coends and cocontinuity of simplicial tensors we get:

Np´{Dq dD F – Bp‹,D,Dq dD F

–

dPD
ż

|B‚p‹,D,Dpd,´qq| d Fd

–

dPD
ż

´

rnsP∆
ż

∆n ˆBnp‹,D,Dpd,´qq

¯

d Fd

–

dPD
ż

rnsP∆
ż

∆n d pBnp‹,D,Dpd,´qq d Fdq

–

dPD
ż

∆n d

´

rnsP∆
ż

Bnp‹,D,Dpd,´qq d Fd
¯

Moreover,

Bp‹,D,Fq –

rnsP∆
ż

∆n dBnp‹,D,Fq

–

rnsP∆
ż

∆n d

´

ž

sPDrns

Fs0

¯

Hence we simply have to prove that we have an isomorphism
dPD
ż

Bnp‹,D,Dpd,´qq d Fd –
ž

sPDrns

Fs0

By Lemma 5.111 we have Bnp‹,D,Dpd,´qq – Npd{Dqn, so the LHS of may be
rewritten as

dPD
ż

ž

Npd{Dqn

Fd

But elements in Npd{Dqn are strings s : rns Ñ D of n composable morphisms in D

together with an arrow d Ñ s0 in D. Thus, we obtain
dPD
ż

ž

sPDrns

Dpd, s0q d Fd –
ž

dPDrns

dPD
ż

Dpd, s0q d Fd –
ž

sPDrns

Fs0

as wanted. □

For more details on homotopy (co)limits and categorical homotopy theory, see
[34].
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6. Sheaf Theory and Localizations

I have no use for adventures. Nasty
disturbing uncomfortable things!
Make you late for dinner!

Tolkien, J.R.R. The Hobbit (Bilbo
Baggins)

This section is based on [9] and the corresponding Nlab article on Sheaves.

The study of sheaves is, at its core, the study of locality, which captures the idea
that the properties of an object can be understood by examining it locally. Sheaves
provide a powerful framework for encoding this local information and gluing it
together to obtain a global understanding. However, in certain situations, the con-
ventional framework of sheaves falls short, and a more flexible and sophisticated
notion is required to capture the intricate nature of the data under consideration.
This is where the notion of 8-sheaves comes into play. An ordinary sheaf is a
mathematical construct that assigns local data to each open subset of a topological
space. The concept of locality is encoded through the sheaf condition, which states
that the local data on overlapping open subsets should be compatible. However, in
modern mathematics, there is a growing need to handle more complex and nuanced
data that goes beyond what can be captured by ordinary sheaves. To address this
limitation, the theory of 8-sheaves was developed. The key idea behind 8-sheaves
is to generalize the notion of locality to account for higher-dimensional informa-
tion. Instead of assigning ordinary sets or groups to open subsets, 8-sheaves assign
higher categorical structures, such as 8-groupoids or 8-categories. These higher
structures allow for a more refined encoding of local data, capturing not only the
objects themselves but also the rich network of relationships and interactions be-
tween them. In this chapter we will first discuss the notion of ordinary sheaves
on a site and we will investigate how any such category of sheaves is really just a
reflective subcategory embedding. This in turn will motivate the notion of 8-sheaf,
as this will be a homotopical version of a reflective subcategory embedding.

6.1. (Pre)Sheaves. Let us start off this chapter by reminding the reader of the
classical definition of a presheaf on a topological space. Fix a topological space
X. Then X induces a poset category of open subsets OX which has as its objects
the open subsets of X and morphisms are inclusions. A presheaf S on OX (or
put differently a functor S : OXop Ñ Set) then boils down to providing a family
of sections pSUqUPOX and restriction maps |V : SU Ñ SV for every inclusion
V Ă U in OX. The canonical example of such a presheaf is the hom-functor
よTopX “ Topp´, Xq which takes an open subset U Ă X to the set of continuous
functions ToppU,Xq and an inclusion V Ă U is taken to the genuine restriction map
|V : ToppU,Xq Ñ ToppV,Xq. We then also readily notice that Topp´, Xq yields a
sheaf, that is, it satisfies Serre’s condition: Given any U P OX and any open cover
pUiqiPI of U such that whenever there are maps fi P ToppUi, Xq subject to the
condition

fi|UiXUj “ fj |UiXUj

for all i, j P I, then there exists exactly one element f P ToppU,Xq such that
f |Ui “ f for all i P I. In other words, continuity is, unsurprisingly, really a purely
local property. Generalizing the notion of presheaf is quite straightforward then.

Definition 6.1. A presheaf on a category C is a functor S : Cop Ñ Set.

https://ncatlab.org/nlab/show/sheaf
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However, generalizing the notion of a sheaf to something more general than the
category OX takes a little more work:

Definition 6.2. Let C be a category.
‚ A Grothendieck topology on C is a set J of families of morphisms tφi : Ui Ñ

Uu with common codomains (known as coverings) such that
– for any isomorphism φ in C we have tφu P J.
– if tUi Ñ Uu P J and tVij Ñ Uiu P J for each i, then the family of

respective compositions tVij Ñ Uu is in J.
– if tUi

φi
Ñ Uu P J and f : V Ñ U is any morphism, then the pullback

Ui ˆU V V

Ui Uφi

f

exists and tUi ˆU V Ñ V u P J.
‚ A Grothendieck site or just site pC,Jq is a small category C endowed

with a Grothendieck topology J.

The notion of a Grothendieck topology generalizes the notion of open covers of
topological spaces. The respective axioms for the set J in the above definition are
also quite natural: The only isomorphism in OX is the identity on X itself (where
X is assumed to be a topological space). Certainly, tX ãÑ Xu itself yields an open
cover for X. Thus, for any general isomorphism φ : domφ Ñ codφ, it is natural to
assume that tφu constitutes a cover for codφ. Moreover, the second axiom in the
definition of a Grothendieck topology J is certainly also something which holds
for open covers of topological spaces and therefore it is natural to also assume
this condition to hold true for a general cover. Lastly, if we consider the pullback
diagram in the above definition with respect to an open cover for a topological
space X, then Ui ˆX V in OX is nothing else than Ui X V and Ui X V Ñ Ui is
simply an inclusion, that is, an element of the open cover.

Definition 6.3. Let pC,Jq be a (small) site. A presheaf S P PshpCq is called a
sheaf (or J-sheaf ) if

‚ for every covering family tUi
φi
Ñ UuiPI in J,

‚ and for every compatible family of elements given by a collection

psi P SUiqiPI

such that for all j, k P I and all morphisms Uj
f

Ð c
f 1

Ñ Uk in C so that

c

Uj Uk

U

f f 1

φj φk

commutes, we have

Spfqpsjq “ Spf 1qpskq P Sc

Remark 6.4. The categoryOX is certainly a site, where the corresponding Grothendieck
topology is given by the collections of open covers of objects in OX. In other words,
a covering family tUi Ñ Uu in OX is simply a family of open subsets of U such
that YUi “ U . A presheaf S : OXop Ñ Set is then a sheaf precisely if for every
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covering family tUi ãÑ UuiPI and any compatible family of elements psi P SUiqiPI
such that for all j, k P I and all Uj Ðâ V ãÑ Uk in OX so that

V

Uj Uk

U

commutes (which boils down to V Ă Uj Ă U and V Ă Uk Ă U respectively), we
have

si|V “ sj |V

which precisely agrees with the usual definition of sheaf on OX.

We shall next give an equivalent definition of what a sheaf is in more general
abstract terms:

Definition 6.5. Let pC,Jq be a site.
‚ Given a covering tUi

φi
Ñ UuiPI in J, its corresponding Čech sieve is the

presheaf SptUi
φi
Ñ Uuq defined as the coequalizer of the diagram

š

i,jPI

よUi ˆよU よUj
š

iPI

よUi

where よ : C Ñ PshpCq is the Yoneda embedding. Here the coproduct on
the left of the above diagram is defined via the pullbacks

よUi ˆよU よUj よUi

よUj よU

よφi

よφj

pj

pi

while the two parallel arrows are those induced componentwise by the two
projections pi and pj in the pullback diagram.

‚ Denote by i
tUi

φi
ÑUu

: SptUi
φi
Ñ Uiuq ÑよU the canonical morphism that is

induced by the universal property of the coequalizer from the morphisms
よφi : よUi ÑよU and よUi ˆよU よUj ÑよU :

š

i,jPI

よUi ˆよU よUj
š

iPI

よUi

SptUi
φi
Ñ Uuq

よU

i
tUi

φi
ÑUu
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Remark 6.6. Since (co)limits are calculated componentwise in a category of presheaves,
we may calculate the sieve SptUi

φi
Ñ Uuq very explicitly. Indeed, recall that the col-

imit of a diagram D : D Ñ Set may be computed as

colim
dPD

Dd –

š

Dd

„

where „ is an equivalence relation on the set
š

dPD

Dd defined by

pd, t P Ddq „ pd1, t1 P Dd1q
def

ðñ Df : d Ñ d1 : Dpfqptq “ t1

Thus, if c P C is a fixed object then we may consider the diagram SptUi
φi
Ñ Uuqpcq

given by the coequalizer of
š

i,jPI

Cpc, Uiq ˆCpc,Uq Cpc, Ujq
š

iPI

Cpc, Uiq

Using the above formula for general colimits of set-valued diagrams we deduce that
SptUi

φi
Ñ Uuqpcq corresponds to those morphisms f P Cpc, Uq that factor through

some φk for some k P I:

c Uk

U

Dfk

f φk

Definition 6.7. A sheaf on a site pC,Jq or a J-sheaf is a presheaf S P PshpCq

that is a local object with respect to all i
tUi

φi
ÑUu

: an object such that for all cov-

ering families tUi
φi
Ñ Uu in J we have that the hom-functor sends the canonical

morphisms i
tUi

φi
ÑUu

: SptUi
φi
Ñ Uuq ÑよU to isomorphisms:

PshCpよU,Sq PshCpSptUi
φi
Ñ Uuq,Sq

i‹
tUi

φi
ÑUu

The category of J-sheaves ShJpCq or ShpC,Jq is the full subcategory of presheaves
which has only J-sheaves as its objects.

Remark 6.8. The above can be reformulated by means of the Yoneda Lemma and
the fact that the contravariant functor PshCp´,Sq sends colimits to limits: A
presheaf S is then a sheaf if and only if the induced diagram

SU
š

iPI

PshCpよUi,Sq
š

i,jPI

PshCpよUi ˆよU よUj , Sq

is an equalizer diagram for each covering family tUi Ñ Xu P V. Thus, since the
pullbacks of presheaves よUi ˆよU よUj are themselves representable by definition
of a site, we know that the pullback UiˆU Uj exists in C even before passing to the
Yoneda embedding. Hence applying the Yoneda Lemma the sheaf condition boils
down to

SU
ś

iPI

SpUiq
ś

i,jPI

SpUi ˆU Ujq

being an equalizer diagram. This is referred to as the descent condition along the
covering family.

Proposition 6.9. The condition that the induced morphism

i‹
tUi

φi
ÑUu
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is an isomorphism for a cover tUi
φi
Ñ Uu is equivalent to the condition that the

set SU is isomorphic (in bijective correspondence) to the set of compatible families
psi P SUiq as given in Definition 6.3.

Proof. See the Nlab Sheaf Proposition 2.8. □

6.2. Reflective Localization. Recall the notions of category with weak equiva-
lences and localization of a category as defined in chapter 5.2. We have explicitly
constructed the localization at a class of weak equivalences W Ă C. However, one
may also go about the definition in a more abstract manner:

Definition 6.10. Let C be a category with weak equivalences W. Then the
localization of C at W is, if it exists,

‚ a category CrW´1s,
‚ a functor γ : C ↠ CrW´1s “: C„

such that
‚ γ sends all morphisms in W to isomorphisms in C„.
‚ γ is universal with this property: If F : C Ñ D is any functor which sends

morphisms in W to isomorphisms, then F factors through γ up to natural
isomorphism:

C D

C„

F

γ locpFq

– ξ

and any two such factorizations locpFq and ĂlocpFq are related by a unique
natural isomorphism ζ : locpFq Ñ ĂlocpFq compatible with ξ : F

–
Ñ locpFqγ

and rξ : F
–
Ñ ĂlocpFqγ:

C D D C D

“

C„ C„ C„

F

locpFq ĂlocpFq

F

ĂlocpFq

ζξ rξ

In other words, we have a commutative diagram

F locpFqγ

ĂlocpFqγ

ξ

ζγ
rξ

Remark 6.11. The previous definition certainly extends the notion of localization
of a category C at a class of weak equivalences W. Our original definition of course
satisfies all the respective properties (the involved natural isomorphisms are just
identities).

Definition 6.12. Let C be a category with weak equivalences W. Then the
localization of C at W is called a reflective localization, if the localization functor
has a fully faithful right adjoint, exhibiting it as the reflection functor of a reflective
subcategory-inclusion:

C CrW´1s

γ

%

https://ncatlab.org/nlab/show/sheaf
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Definition 6.13. Let C be a category and let S Ă MorC be a set of morphisms
in C.

‚ An object c P C is called S-local if for all s P S the hom-functor induces
a bijection

Cpcodpsq, cq Cpdompsq, cq
Cps,cq

In other words, any morphism f : dompsq Ñ c extends uniquely along s to
codpsq:

dompsq c

codpsq

f

s
D!

‚ A morphism f in C is an S-local morphism if for every S-local object
c P C the induced hom-functor

Cpcodf, cq Cpdomf, cq
Cpf,cq

is a bijection.
‚ Denote by ι : CS ãÑ C the inclusion of the full subcategory of S-local

objects.
‚ The reflection onto S-local objects is, if it exists, a left adjoint L to the

full subcategory inclusion ι : CS ãÑ C:

C CS
ι

L

%

Lemma 6.14. Let us consider adjoint functors

C D
F

U

%

Then F is fully faithful if and only if the adjunction unit η : 1C Ñ UF is a natural
isomorphism. Moreover, if F is fully faithful, then Uε is a natural isomorphism.

Proof. Let us denote by φ the adjunction isomorphism

DpF,´q Cp´,Uqφ
–

Then we have η “ φp1Fq. We shall then verify that the dashed arrow is equal to
the composition of the other two arrows in the diagram

Cpc, c1q DpFc,Fc1q

Cpc,UFc1q

F

φ–
pηc1 q‹

If we manage to show this, then the first of the above claims obviously holds. By
naturality of φ we have a commutative diagram

DpFc1,Fc1q Cpc1,UFc1q

DpFc,Fc1q Cpc,UFc1q

pFfq
‹

φ

φ

f‹

–

–
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Evaluating the above square at the morphism 1Fc1 yields the first claim. On the
other hand, if F is fully faithful then we have shown that η : 1C Ñ UF is a natural
isomorphism. By the triangle identities we have a commutative diagram

U UFU

U

ηU

Uε

and hence Uε is a left inverse for the natural isomorphism ηU, which in turn yields
that Uε must be a natural isomorphism. □

Remark 6.15. Certainly enough the above Lemma has its dual counterpart.

Proposition 6.16. Every reflective subcategory inclusion

CL C
L

ι
%

is the reflective localization at the class W :“ L´1pIsosq of morphisms that are sent
to isomorphisms by the reflector L.

Proof. We just have to verify the universal property as given in Definition 6.10.
So, let F : C Ñ D be a functor that maps morphisms in W to isomorphisms in
D. We shall first show that F factors through L up to natural isomorphism. Let
η : 1CL Ñ ιL and ε : Lι Ñ 1C be the corresponding adjunction unit and counit, and
consider the whiskering ξ :“ Fη along with locpFq :“ Fι:

C D C C D

:“

CL CL

F

L locpFq L ι

F

η

But Fη : F Ñ FιL is a natural isomorphism (by the dual counterpart of Lemma
6.14), so the factorization follows. For uniqueness up to isomorphism of this fac-
torization see the Nlab page reflective localization Proposition 3.1. □

Proposition 6.17. Let C be a category with weak equivalences W. If the localiza-
tion of C at W is reflective

C CrW´1s
L

ι

%

(where we use the letter L instead of γ to denote the localization functor) then
CrW´1s

ι
ãÑ C is equivalently the inclusion of the full subcategory of W-local objects

and hence L is equivalently the reflection onto W-local objects.

Proof. We shall prove that
‚ every object ιc P C for c P CrW´1s is an S-local object.
‚ c P C is W-local if and only if it is in the essential image of CrW´1s

ι
ãÑ C.

The first claim is immediate from the natural isomorphism of functors

Cp´, ιcq – CrW´1spL, cq

Regarding the second claim: Assume first that c P C is W-local. Our first ob-
servation is then that c must also be local with respect to the saturated class of
morphisms

Wsat :“ L´1pIsosq

https://ncatlab.org/nlab/show/reflective+localization
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that are inverted by L. Indeed, the hom-functor

C
Cp´,cq

Ñ Setop

takes morphisms in W to isomorphisms (by assumption). Hence by the univer-
sal property of the localization functor L it must factor through L up to natural
isomorphism:

C Setop

CrW´1s

L

Cp´,cq

locpCp´,cqq

ζ–

But this implies that any morphism that is inverted by L must also be inverted by
Cp´, cq, as claimed. We then know that the component ηc at c of the adjunction
unit η : 1C Ñ ιL must be in Wsat (Lη is a natural isomorphism by Lemma 6.14).
However, ηc P Wsat ensures that we have a bijection

CpιLc, cq Cpc, cq
Cpηc,cq

–

Denote by η´1
c the preimage of the identity morphism 1c under the above bijection.

By construction η´1
c is a left inverse for ηc and by the 2-out-of 3 property η´1

c P Wsat.
Moreover, the above also showed that ιLc is in Wsat, so we may play the same game
with η´1

c : We consider the bijection

Cpc, ιLcq CpιLc, ιLcq
Cpη´1

c ,ιLcq

–

to obtain a left inverse pη´1
c q´1 for η´1

c . But this implies that ηc : c Ñ ιLc is an
isomorphism, which proves that c is in the essential image of ι. Conversely, if c P C

is in the essential image of ι, then it is immediate that c is W-local. □

Proposition 6.18. Let C be a category and let S Ă MorC be a class of morphisms
in C. Then the reflection onto S-local objects (Definition 6.13) satisfies, if it exists,
the universal property of a localization of categories with respect to left adjoint
functors inverting morphisms in S.

Proof. We first observe that

S-local morphisms “ L´1pIsosq

since we have

Cpf, cq “ Cpf, ιcq – CSpLf, cq

for every morphism f in C and every S-local object c P C. If

C D
F

U

%

is a pair of adjoint functors such that the left adjoint F inverts the morphisms of
S. From the isomorphism

DpFc, dq – Cpc,Udq

it then follows immediately that U takes values in CS . This in turn, however,
implies that F inverts all S-local morphisms, and hence all morphisms that are
inverted by L. Thus the claim follows from Proposition 6.16. □
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So having all that, what is the relation with our notion of J-sheaves for a site
pC,Jq? We may consider the fully faithful inclusion of J-sheaves into presheaves
on C:

ShpC,Jq PshC
ι

This functor has a left adjoint if and only if the right Kan extension

ShpC,Jq ShpC,Jq

PshC

ι
L:“Ranι1

exists and is preserved by ι (this follows from Theorem 3.10). The category ShpC,Jq

is complete however, since limits commute with limits (the defining condition of a
sheaf involves an equalizer diagram) and we may compute limits of sheaves in the
category of presheaves. Therefore, L “ Ranι1 exists and, moreover, it is preserved
by ι pι leaves the Kan extension untouched). This implies, along with Proposition
6.16, the following result:

Theorem 6.19. Every category of sheaves is a reflective subcategory

ShpC,Jq PshC
ι

L

%

In particular, the category of sheaves is equivalent to the localization PshCrW´1s

with W :“ L´1pIsosq.

Remark 6.20. In fact, even more than the previous Theorem holds true: First of
all one may prove that the reflector L : PshC Ñ ShpC,Jq (also called sheafification)
is left exact (preserves finite limits). Moreover, every Grothendieck topos arises in
this way: Given a small category C there is a bijection between

‚ the equivalence classes of left exact reflective subcategories E ãÑ PshC of
the category of presheaves

‚ Grothendieck topologies J on C,
which are such that E « ShpC,Jq. See the Nlab link sheaf toposes are equivalently
the left exact reflective subcategories of presheaf toposes.

6.3. (Left) Bousfield Localization. This chapter is based on the Nlab article
Bousfield localization of model categories.

Bousfield Localization is, very roughly speaking, a procedure that takes a model
category as input and spits out a new model category with more weak equivalences.

C Cloc
left Bousfield localization

Bousfield localization will be a most crucial tool in the later chapters on 8-categories.
The main idea will be to take a certain model category of simplicial presheaves -
e.g. Psh∆p∆ˆdqinj - on which we will perform a left Bousfield localization so as
to single out 8-categories as fibrant objects in the new model category structure.
Therefore, it is helpful to think of Bousfield localization as the procedure which
singles out certain kinds of objects (the fibrant objects in the new model structure)
and provides these with a new ambient homotopy theory of sorts.

Definition 6.21. A left Bousfield localization Cloc of a model category C is another
model category structure on the underlying category C with the same cofibrations

CofCloc “ CofC

https://ncatlab.org/nlab/show/sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes
https://ncatlab.org/nlab/show/sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes
https://ncatlab.org/nlab/show/Bousfield+localization+of+model+categories
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but with more weak equivalences

WCloc Ą WC

Remark 6.22. It follows directly from the definition of a left Bousfield localization
that

‚ FibCloc “

´

CofCloc X WCloc

¯m

Ă

´

CofCloc X WC

¯m

“ FibC

‚ FibCloc X WCloc “ Cofm
Cloc

“ Cofm
C “ FibC X WC

‚ The identity functor C Ñ Cloc preserves cofibrations and weak equiva-
lences.

‚ The identity functor Cloc Ñ C preserves fibrations and trivial fibrations.
‚ Consequently, the pair of identity functors constitutes a Quillen adjunction

C Cloc

%

Definition 6.23. Let C and D be model categories, and let

C D
F

U

%

be a Quillen adjunction. Then this adjunction is called a Quillen reflection if the
induced derived adjunction (see Theorem 5.70)

HoC HoD
LF

RU

%

is a reflective subcategory-inclusion.

Proposition 6.24. Let C be a model category. Then any left Bousfield localiza-
tion Cloc of C constitutes a Quillen reflection. More precisely, a left Bousfield
localization constitutes a Quillen adjunction between identity functors

Cloc C
id

id

%

which is a Quillen reflection. In particular, the induced derived adjunction

HoCloc HoC
Rid

Lid

%

is a reflective subcategory-inclusion.

Proof. See Example 2.2 on the Nlab Quillen reflection. □

Remark 6.25. The idea of a Quillen reflection is that of a homotopical reflective
subcategory-inclusion. Proposition 6.24 tells us that left Bousfield localization is a
particularly nice such homotopical reflective subcategory inclusion.

Throughout, we shall assume that C is a simplicial model category. Let S Ă

MorC be a subclass of morphisms. Recall that in an ordinary category C, a mor-
phism f in C is an isomorphism if and only if for all objects x P C the morphism

Cpf, xq : Cpcodf, xq Ñ Cpdomf, xq

is an isomorphism. Guided by this fact we have the following definition (very much
reminiscient of we did in the previous chapter):

Definition 6.26. Let C and S be as described above.

https://ncatlab.org/nlab/show/Quillen+reflection
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‚ An object X P C is called S-local object if for all s in S the induced
morphism on derived hom-spaces

RHompcodpsq, Xq RHompdompsq, Xq
RHomps,Xq

is a weak equivalence of simplicial sets.
‚ A morphism f in C is called an S-local weak equivalence or S-equivalence

if for all S-local objects X P C the morphism

RHompcodf,Xq RHompdomf,Xq
RHompf,Xq

is a weak equivalence of simplicial sets.
‚ We write WS for the collection of all S-local weak equivalences.

Remark 6.27. The above definitions may be rephrased by using

RHompX,Y q » CpLX,RY q

for L,R : C Ñ C cofibrant and fibrant replacement functors and all X,Y P C.

Proposition 6.28. Let C be a ’nice enough’ simplicial model category.
‚ A fibrant object X is an S-local object if and only if for all s P S the

morphism

Cpcodpsq, Xq Cpdompsq, Xq
Cps,Xq

is a trivial Kan fibration.
‚ A cofibration f in C is an S-local weak equivalence if for all S-local fibrant

objects X the morphism

Cpcodf,Xq Cpdomf,Xq
Cpf,Xq

is a trivial Kan fibration.

Remark 6.29. For what we mean by ’nice enough’ we refer the reader to the cor-
responding nlab article Bousfield localization of model categories as well as the
corresponding section on Bousfield localization in [16].

If C is a simplicial model category and f is a weak equivalence between cofibrant
objects in C, then it follows from the axioms that

Cpcodf,Xq Cpdomf,Xq
Cpf,Xq

is a weak equivalence of simplicial sets for all fibrant objects X. In particular,
since the cofibrant replacement functor L : C Ñ C is homotopical by the 2-out-of-3
axiom we get:

Lemma 6.30. Every ordinary weak equivalence in C is also an S-local weak equiv-
alence:

W Ă WS

Definition 6.31. The left Bousfield localization LSC of a given model category C

at a class of morphisms S is, if it exists, the new model category structure on C

with
‚ CofLSC “ CofC
‚ CofLSC X WLSC “ CofC X WS

Proposition 6.32. Assuming the left Bousfield localization exists as above, fibrant
objects in LSC are precisely the fibrant objects in C that are S-local objects.

https://ncatlab.org/nlab/show/Bousfield+localization+of+model+categories
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One now wonders if any left Bousfield localization is induced by a family of
morphisms S in C:

Proposition 6.33. In the context of left proper, cofibrantly generated simplicial
model categories (see the Nlab), for Cloc a left Bousfield localization of C as defined
in Definition 6.21, there is a set S Ă MorC such that

Cloc “ LSC

Theorem 6.34. If C is a nice enough simplicial model category and S Ă MorC
is a small set of morphisms, then the left Bousfield localization LSC does exist.
Moreover, it satisfies the following conditions:

‚ The fibrant objects of LSC are precisely the S-local objects of C that are
fibrant in C.

‚ LSC is itself a left proper model category.
‚ LSC is itself a simplicial model category.

Remark 6.35. See Bousfield localization of model categories and the correspond-
ing section in [16] for more details on the technicalities. For our purposes all left
Bousfield localizations exist, so we really don’t need to indulge ourselves into tech-
nicalities.

Example 6.36. The following model categories C are nice enough, so that The-
orem 6.34 is applicable and therefore, for every set S Ă MorC, the left Bousfield
localization LSC exists:

‚ The category Top endowed with the standard Quillen model structure on
topological spaces.

‚ The category sSet endowed with the standard Quillen model structure on
simplicial sets.

‚ The functor model categories CD
inj for any simplicially enriched small cat-

egory D and C a nice enough category, e.g., C “ sSet.

In the upcoming sections, whenever we mention Bousfield localization, we shall
refer to [16] for a pointer to existence results.

Remark 6.37. Bousfield localization may actually be defined via a universal prop-
erty: Suppose C is a model category and S is a set of morphisms in C. The
left Bousfield localization of C at S is a model category LSC together with a left
Quillen functor F : C Ñ LSC that satisfies the following universal property: com-
posing with F maps left Quillen functors LSC Ñ D bijectively to left Quillen
functors U : C Ñ D such that the left derived functor of U sends elements of S to
weak equivalences in D. In other words, the map

lQpLSC,Dq lQpC,DqL
F‹

is a bijection, where the LHS denotes left Quillen functors LSC Ñ D, while the RHS
denotes left Quillen functors whose left derived functors send S to weak equivalences
in D.

6.4. 8-Sheaves. We shall now generalize the notions of presheaves and sheaves to
simplicial presheaves and simplicial sheaves. The main difference is that a simplicial
presheaf on a site pC,Jq will take values in spaces, or more precisely, in simplicial
sets.

Definition 6.38. A simplicial presheaf on a site pC,Jq is a functor S : Cop Ñ sSet.
The category of simplicial presheaves will be denoted by

Psh∆pCq :“ Psh∆ˆC “ SetC
op

ˆ∆op

https://ncatlab.org/nlab/show/Bousfield+localization+of+model+categories
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We may also define a generalized version of Čech sieves, which are now referred
to as Ĉech nerves:

Definition 6.39. Let pC,Jq be a site and fix a covering U “ tUi
φi
Ñ UuiPI .

‚ The Čech nerve CU of the covering U is the simplicial presheaf given by

CU :“

rksP∆
ż

∆k d
ž

i0,...,inPI

よpUpi0,...,ikqq

where Upi0,...,ikq :“ Ui0 ˆU . . .ˆU Uik is the iterated pullback andよ : C Ñ

SetC
op

is the Yoneda embedding. In more detail, CU is the simplicial
presheaf which has as its n-simplices

CUn :“
ž

i0,...,inPI

よUpi0,...,inq

The simplicial structure maps dk and sk are given by projecting out or
doubling the k-th factor, respectively:

š

i0,...,inPI

よUpi0,...,inq

š

i0,...,in´1PI

よUpi0,...,inq

よUpi10,...,i
1
nq よU

pi10,...,
xi1k,...,i

1
nq

š

i0,...,inPI

よUpi0,...,inq

š

i0,...,in`1PI

よUpi0,...,inq

よUpi10,...,i
1
nq よUpi10,...,i

1
k,i

1
k,...,i

1
nq

D!dk

D!sk

‚ There is a canonical map

CU よU

induced by the universal property
š

i0,...,inPI

よUpi0,...,inq よU

よUpi10,...,i
1
nq

With these notions in hand we may now define the concept of an 8-sheaf:

Definition 6.40. Let pC,Jq be a site and consider the category of simplicial
presheaves Psh∆pCqinj endowed with the injective model structure. An 8-sheaf is
a simplicial presheaf S P Psh∆pCq which is

‚ a fibrant object with respect to the injective model structure on Psh∆pCqinj,
‚ local with respect to the canonical morphisms CU Ñ よU for every cov-

ering U in J, that is, all induced morphisms

RMappよU,Sq RMappCU,Sq

are weak equivalences of simplicial sets.
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Theorem 6.41. There exists a model category structure Psh∆pCqČech, called the
Čech model structure, given by performing left Bousfield localization on Psh∆pCqinj
at the canonical morphisms CU ÑよU . Fibrant objects in this model category are
precisely 8-sheaves.

Proposition 6.42. Let X P Psh∆pCqinj, or X P Psh∆pCqloc for some left Bousfield
localization of the injective model structure on simplicial presheaves, then X may
be written as the homotopy limit (with respect to the associated model structure)

X » hocolimprns ÞÑ constXnq

Proof. Follows along the same lines as the proof of Corollary 5.105. □

We recall that any presheaf may be written as a colimit over representables by
Corollary 3.9. In particular, any object in Psh∆pCqinj or in Psh∆pCqloc for any left
Bousfield localization, is cofibrant. Hence:

Corollary 6.43. Any object X P Psh∆pCqloc for any left Bousfield localization of
Psh∆pCqinj may be written as a homotopy colimit over representables:

X » hocolimよpc, rnsq

Proof. Using Ken Brown’s Lemma 5.17 we have

X – colimよpc, rnsq » colimLpよpc, rnsqq » hocolimよpc, rnsq

where L is some cofibrant replacement functor. □
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7. 8-Categories

Bilbo: "Good morning!" said
Bilbo, and he meant it. The sun
was shining, and the grass was very
green. But Gandalf looked at him
from under long bushy eyebrows
that stuck out further than the
brim of his shady hat.
Gandalf: "What do you mean?" he
said. "Do you wish me a good
morning, or mean that it is a good
morning whether I want it or not;
or that you feel good this morning;
or that it is a morning to be good
on?"

J.R.R. Tolkien, The Hobbit

For the following chapters we will mostly follow [26], [24], [6], [31] and [30].

The notion of categories is a fundamental concept in mathematics that has found
applications in many areas, including topology, algebraic geometry, and homotopy
theory. However, in some cases, a single category is not enough to capture all the
relevant information of a mathematical structure. This has led to the development
of higher category theory and, more recently, 8-category theory. For us it will be
crucial to encode everything in terms of 8-categories, as this will allow us to talk
about fully extended functorial field theories.

7.1. A Simplicial Perspective on Category Theory. There are several ap-
proaches to define what it means to be an 8-category. The idea is to generalize
the standard notion of a category, which has objects and morphisms between those
objects, to something which does not only have objects and morphisms, but also
morphisms between morphisms, and then morphisms between morphisms of mor-
phisms and so on. For example, the following picture visualizes two objects with
two morphisms between these, and then an associated pair of 2-morphisms, along
with a 3-morphism between the 2-morphisms:

‚ ‚

More generally, the following picture shows a multiple 4-category which has objects
(those being the white dots), morphisms between the objects (the pink arrows), and
2-morphisms between 1-morphisms (the purple arrows), 3-morphisms between 2-
morphisms given by the orange arrows and 4-morphisms between the 3-morphisms
(the green arrows). The word multiple highlights that higher morphisms, say a
2-morphism, doesn’t have to have as domain and codomain 1-morphisms which
both share the same domain and codomain themselves. A better name for this
sort of category would probably be quadruple category (if one thinks of double
categories). A 4-category which satisfies that its higher morphisms have as its
source and target only morphisms which have the same domain and codomain will
be called globular 4-category and the mentioned condition is usually referred to as
globularity. Replacing 4 by an arbitrary d, we get a general sketch of definition for
these things.
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We mention that composition of (higher) morphisms should not be assumed to be
unique in general, i.e., composition of morphisms should only be demanded up to
homotopy (this will be discussed in the chapter on 8-groupoids). Encoding both
this property of higher morphisms and this notion of homotopy in the mentioned
context leads quite naturally to a unison of the theory of simplicial sets (or more
generally simplicial presheaves) and the theory of model categories, which in the
end will result in a precise definition of p8, dq-categories.

Before getting to all that it is important to realize that any definition of 8-
category should also include ordinary categories, i.e., any category should be an
8-category where the higher morphisms are all simply identities. Therefore, in this
chapter we will focus our resources towards showing that ordinary category theory
may be encoded by means of simplicial sets, and simplicial sets in turn are encoded
by 8-categories (actually 8-groupoids):

Cat. Theory Simpl. Homotopy Theory 8-Cat. Theory

In order to get a feel for this, recall that for a category C we defined its nerve NC

to be the simplicial set with n-simplices Crns, where rns “ t0 Ñ 1 Ñ . . . Ñ nu is
viewed as a category. This boils down to the following:

NC0 “ ObC

NCn “ Cr1s ˆCr0s . . .ˆCr0s Cr1s

where we recall that Cr0s corresponds to the set of objects of the category C and
Cr1s corresponds to the set of arrows of C. For example, if n “ 2, consider the
commutative diagram

r2s r1s

r1s r0sp1

p0Ñ1 p0

p1Ñ2
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where the maps

pi0Ñ...Ñim : rms Ñ rns(5)

for 0 ⩽ i0 ⩽ i1 ⩽ . . . ⩽ im ⩽ n are given by rms Q j ÞÑ ij P rns. Embedding this
commutative diagram by means of the Yoneda Embedding yields a commutative
square

∆2 ∆1

∆1 ∆0

Since sSet is cocomplete the corresponding pushout ∆1
š

∆0 ∆1 exists and therefore,
by the universal property, there exists a unique map

∆1
š

∆0 ∆1 ∆2

The hom-functor sSetp´,NCq takes this map to an isomorphism:

sSetp∆2,NCq – Cr2s Cr1s ˆCr0s Cr1s – sSetp∆1
š

∆0 ∆1,NCq
–

Indeed, the diagram

Cr2s Cr1s

Cr1s Cr0s

p‹
1

p‹
0Ñ1 p‹

0

p‹
1Ñ2

is a pullback square since Cr2s exactly agrees with

Cr1s ˆCr0s Cr1s “

!

pf, gq P Cr1s ˆ Cr1s | p‹
1f “ p‹

0g
)

“

!

pf, gq P Cr1s ˆ Cr1s | codf “ domg
)

More generally, the commutative diagram

ra` bs rbs

ras r0spa

p0Ñ...Ña p0

paÑ...Ña`b

induces an isomorphism

Cra`bs Cras ˆCr0s Crbs–

The property that NC induces the above isomorphisms may be phrased by saying
that NC is (strictly) local with respect to the family of maps ∆a`b Ñ ∆a

š

∆0 ∆b.
In particular, a functor F : C Ñ D is completely encoded by NF : NC Ñ ND in
terms of the following data:

NF0 “ FCr0s

NFn “ FCr1s ˆCr0s . . .ˆCr0s FCr1s

where FCr0s : Cr0s Ñ Dr0s and FCr1s : Cr1s Ñ Dr1s are the assignments induced by
how the functor acts on objects and morphisms of C. In this manner, we have
seen that every category gives rise to a simplicial set and that the corresponding
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simplicial set is already fully determined if one knows about Cr0s and Cr1s. Is the
converse true?

Definition 7.1. A simplicial set X satisfies the strict Segal condition if the map

Xn Ñ X1 ˆX0 . . .ˆX0 X1

induced by the universal property of the pullback

Xa ˆX0
Xb Xb

Xa X0Xpa

Xp0

is a bijection for all n ⩾ 2.

Remark 7.2. Note that for a category C the assignment of domains and codomains
of morphisms may be equivalently described in terms of the simplicial set NC.
Indeed, domC “ p‹

0 and codC “ p‹
1. Moreover, the codegeneracy map s0 : r1s Ñ r0s

and the degeneracy map d1 : r1s Ñ r2s are equal to p0Ñ0 and p0Ñ2, respectively.
Applying the simplicial set NC to s0 and d1 above yields the respective identity as
well as composition morphisms.

Guided by the previous remark and the strict Segal condition we have the fol-
lowing:

Theorem 7.3. A simplicial set X satisfies the strict Segal condition if and only if
there exists a category C such that NC is naturally isomorphic to X.

Proof. Define the category C as follows: The objects of C are given by the elements
of the set X0 and morphisms between these objects are defined by setting MorC “

X1. Then source, target and identity maps are defined as domC “ d1 : X1 Ñ

X0, codC “ d0 : X1 Ñ X0, 1C “ s0 : X0 Ñ X1 and composition is given by d1 : X2 –

X1 ˆX0 X1 Ñ X1. □

Proposition 7.4. The nerve functor N : Cat Ñ sSet is fully faithful.

Proof. We have to prove that the map

CatpC,Dq Ñ sSetpNC,NDq

has an inverse. Let ζ : NC Ñ ND be a natural transformation. Define ψpζq as the
functor C Ñ D which on objects is equal to ζ0 and on morphisms is equal to ζ1.
Simplicial identities verify that this is indeed a functor. It is then clear that for
any functor F : C Ñ D we have ψpNFq “ F, and on the other hand, Nψpζq “ ζ as
those maps agree at level 0 and level 1 and that already completely determines the
map. □

The strict Segal conditions, or rather the structure of what it means for a simpli-
cial set to actually be a standard category may also be encoded in terms of (inner)
horn filling conditions. Recall the i-th horn Λni from Example 2.9. We may then
also describe what happens to groupoids after having been embedded by the nerve
functor:

Theorem 7.5. Let X P sSet.
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‚ X is the nerve of a category precisely if all inner horns have unique fillers:
For all 0 ă i ă n any diagram of the form

Λni X

∆n

D!

admits a unique lift ∆n Ñ X making the diagram commute.
‚ X is the nerve of a groupoid precisely if all horns have unique fillers: For

all 0 ⩽ i ⩽ n any diagram of the form

Λni X

∆n

D!

admits a unique lift ∆n Ñ X making the diagram commute.

Let us make sense of why this might be true before getting to the actual proof
of the result. Let tJju

n´1
j“1 be the subset of Pprnsqztrns, t0, . . . ,pi, . . . , nuu whose

elements have cardinality |Ji| “ n for all i (there are exactly n´ 1 such sets). The
horn Λni may then be identified with the iterated pushout

∆n,J1
ž

∆n,J1XJ2

∆n,J2
ž

∆n,J2XJ3

. . .
ž

∆n,Jn´2XJn´1

∆n,Jn´1

where ∆n,J (with J P tJju
n
j“1) is the corresponding simplicial subset of ∆n with

m-simplices

∆n,J
m “

!

f P ∆n
m | fprmsq Ă J

)

In particular, note that ∆n,J – ∆n´1. With that in mind, let us look at the case
where n “ 2. As we saw in Example 2.9, the horn Λ2

0 may be depicted by

1

0 2

while Λ2
1 looks like

1

0 2

and Λ2
2 looks like

1

0 2
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Since

sSetpΛ2
1, Xq – sSet

´

∆2,t0,1u
ž

∆2,t1u

∆2,t1,2u, X
¯

– sSetp∆2,t0,1u, Xq
ź

∆2,t1u

sSetp∆2,t1,2u, Xq

–

!

pf, f 1q P X1 ˆX1 | d1f “ d0f
1
)

any map Λ2
1 Ñ X corresponds to a pair pf, f 1q of 1-simplices of X such that

d0f “ d1f
1 (one should think of composable morphisms). The (unique) lifting

condition corresponding to Λ2
1, which is the only inner horn for ∆2, encapsulates

the notion ofX having unique composition in the sense that any two 1-simplices, for
which the source is the target of the other, can be filled to a unique 2-simplex. The
additional face is then thought of as the composite of the original two 1-simplices:

codf

domf codf 1

f f 1

f 1f

The outer horns encode something else entirely, however. The existence and unique-
ness of lifts when i “ 0 and i “ 2 guarantee the existence of unique left and right
inverses to a given 1-simplex:

codf domf

domf domf codf domf
1codf

fD!f 1

1domf

f D!f 1

Proof of Theorem 7.5. Let X be a simplicial set such that every inner horn has
a unique filler. We will show that there is a category C and an isomorphism of
simplicial sets X Ñ NC:

‚ The objects of C are the vertices of X, i.e., ObC :“ X0.
‚ Given a pair of objects c, c1 P C the hom-set Cpc, c1q is defined as the set

of 1-simplices f P X1 such that d1f “ c and d0f “ c1.
‚ For each object c P C, we define the identity morphism 1c P Cpc, cq to be

the 1-simplex s0pcq.
‚ For objects c, c1, c2 P C and a pair of morphisms f P Cpc, c1q and f 1 P

Cpc1, c2q we may apply the inner horn filling hypothesis to conclude that
there is a unique 2-simplex σ P X2 satisfying d2σ “ f and d0σ “ f 1. We
may then define the composition f 1f P Cpc, c2q to be the edge d1σ.

We then claim that C is a category. In order to check this we have to verify that
the composition law is unital and associative. For unitality we have to prove:

1c1f “ f “ f1c

In order to see the left identity, we must construct a 2-simplex σ P X2 so that
d0σ “ 1c1 and d1σ “ d2σ “ f . The degenerate 2-simplex s1f has these properties.
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Let us check associativity now: For composable morphisms

a b c d
f f 1 f2

in C we have to verify f2pf 1fq “ pf2f 1qf . By repeatedly applying the inner horn
filling property we deduce the following:

‚ There is a unique 2-simplex σ0 P X2 satisfying d0σ0 “ f2 and d2σ0 “ f 1.
‚ There is a unique 2-simplex σ3 P X2 satisfying d0σ3 “ f 1 and d2σ3 “ f .
‚ There is a unique 2-simplex σ2 P X2 satisfying d0σ2 “ f2f 1 and d2σ2 “ f .
‚ There is a unique 3-simplex η P X3 satisfying d0η “ σ0, d2η “ σ2 and
d3η “ σ3.

The 3-simplex yields a diagram

b

d

a

c
f 1f

f 1

f

pf2f 1
qf

f2

f2f 1

σ3

σ1

σ2

σ0

Setting σ1 :“ d1η yields a 2-simplex which satisfies d0σ1 “ f2, d1σ1 “ pf2f 1qf and
d2σ1 “ f 1f . Hence σ1 witnesses the identity f2pf 1fq “ pf2f 1qf . Finally, note that
every n-simplex σ : ∆n Ñ X determines a functor rns Ñ C, given on objects by
values of σ on the set of vertices ∆n

0 and on morphisms by the values of σ on the
set of edges ∆n

1 . This determines a simplicial map X Ñ NC, which is bijective
on simplices of dimension ⩽ 1. For the remaining claims see [26] Lemma 1.2.3.2,
Proposition 1.2.4.2. and Proposition 1.2.3.1. □

So we have encoded categories and functors in the setting of simplicial sets. What
about natural transformations then? Let C,D be categories and view r1s “ t0 Ñ 1u

as a category. We then recall that a natural transformation between two functors
C Ñ D is nothing else than a functor C ˆ r1s Ñ D. This is easily seen by making
use of the internal hom adjunction

CatpC ˆ r1s,Dq – Catpr1s, rC,Dsq

and by realizing that functors with domain r1s just pick out an arrow in the tar-
get category. In that spirit we see that natural transformations are equivalently
morphisms NC ˆ ∆1 Ñ ND since, first of all Nr1s “ ∆1 and therefore

MappNC,NDq1 :“ sSetpNpC ˆ r1sq,NDq – CatpC ˆ r1s,Dq
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Summarizing all this amounts to the following: Category theory can be done just
as well by means of only looking at simplicial sets, categories are encoded by their
nerves, as are the corresponding functors, while natural transformations correspond
to simplicial homotopies between the respective nerves of categories.

7.2. p8, 0q-Categories aka 8-Groupoids. We have seen what really constitutes
a category and how it can be (fully faithfully so) encoded as a simplicial set. We
have also seen that, in this simplicial setting, a groupoid exactly corresponds to a
strict Kan complex, i.e., all fillers are unique. The first notion of an 8-category that
we shall define (rigorously) is that of an 8-groupoid. Very roughly speaking, an
8-groupoid, like any 8-category, has objects and k-morphisms for every natural
number k ⩾ 1. However, an 8-groupoid has, by definition, only invertible k-
morphisms for all k. Recall that any topological space X may be viewed as a Kan
complex Π⩽8X :“ Topp| ´ |, Xq (this is Theorem 2.43) which takes rns and maps
it to the set of continuous maps |∆n| Ñ X.

Example 7.6. Any topological space X gives rise to an 8-groupoid:
‚ Objects are the points in X.
‚ 1-morphisms are paths from one point to the other.
‚ 2-morphisms are homotopies between paths.
‚ 3-morphisms are homotopies between homotopies between paths.

...
‚ k-morphisms are given by homotopies between homotopies between . . .

between paths.
‚ Composition is given by concatenation of paths, homotopies, etc. We note

that this kind of composition is only unique up to (higher) homotopy.
Identities are the constant paths, homotopies, etc.

We note that the above 8-groupoid is readily encoded by the Kan complex Π⩽8X.
In particular, we realize that Π⩽8X only depends on the homotopy type of X.

With the above example in mind, Grothendieck’s Homotopy Hypothesis argues
that any sensible notion of 8-category should imply that the collection of 8-
groupoids is already fully determined by taking homotopy types of topological
spaces. In fact, Grothendieck’s homotopy hypothesis states the following:

Homotopy Types of Top. Spaces – 8-Groupoids

This motivates the following definition:

Definition 7.7. An p8, 0q-category, or just 8-groupoid, is a Kan complex.
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Remark 7.8. The prefix p8, 0q should emphasize that there are infinitely many
layers of higher morphisms, yet all of them are trivial in that they are isomorphisms
(up to homotopy). More generally, an p8, dq-category will mean an 8-category
which allows only the first d-layers of higher morphisms to be non-trivial, while all
higher morphisms, starting with pd` 1q-morphisms, will always be isomorphisms.

Example 7.9. Consider the real numbers R with its group structure induced by
addition. We may view R as a category with a single object, while its set of mor-
phisms is given by the real numbers themselves. Taking the nerve of this category,
and again denoting it by R, results in a Kan complex and hence an 8-groupoid.
This construction works for any Lie group.

With this definition one may verify the validity of the homotopy hypothesis,
which is then nothing more than a restatement of Theorem 5.39 by means of Propo-
sition 5.25:

Theorem 7.10 (see [15]). Consider the full subcategories of bifibrant objects KanQuillen ãÑ

sSetQuillen and SpacesQuillen ãÑ TopQuillen. Then the adjunction

KanQuillen SpacesQuillen

|´|

Π⩽8

Quillen

%

is a Quillen equivalence. In other words, the induced adjunction

HopKanQuillenq HopSpacesQuillenq

L|´|

RΠ⩽8

%

is an equivalence of categories.

Remark 7.11. This motivates why we would call a simplicial set a space.

What about 8-functors and 8-natural transformations between 8-groupoids
(Kan complexes)?

Definition 7.12. Let C,D be 8-groupoids, i.e., Kan complexes.
‚ An 8-functor C Ñ D is simply a natural transformation of the underlying

Kan complexes.
‚ An 8-natural transformation is a simplicial homotopy between two sim-

plicial maps C Ñ D, that is, it is a map ∆1 ˆ C Ñ D.

We recall that the nerve functor N : Cat Ñ sSet has a left adjoint h : sSet Ñ Cat,
which maps a simplicial set to its associated homotopy category.

Remark 7.13 (see also [18]). Any 8-functor between 8-groupoids induces a functor
between the respective homotopy categories (by applying h). Let us understand how
an 8-natural transformation h : C ˆ ∆1 Ñ D induces a natural transformation
between functors on the respective homotopy categories. First of all, the domain
and codomain 8-functors of h are given by

C ˆ ∆0 C ˆ ∆1 C ˆ ∆0

C D C

–

1ˆd1 1ˆd0

h

ζ1:“hp1ˆd1q

–

ζ2:“hp1ˆd0q

Next note that any 1-morphism f P C1 may be interpreted as a map ∆1 f
Ñ C

(by the Yoneda Lemma). Hence any such f induces a morphism hf given by the
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composition

∆1 ˆ ∆1 C ˆ ∆1 D
hfˆ1

This in turn results in a square of 1-morphisms in D by considering the four maps:

∆1 ˆ ∆0 ∆1 ˆ ∆1 C ˆ ∆1 D

∆0 ˆ ∆1 ∆1 ˆ ∆1 C ˆ ∆1 D

hfˆ1
1ˆd1

1ˆd0

hfˆ1
d1ˆ1

d0ˆ1

These may be depicted by

ζ1pdomfq ζ2pdomfq

ζ1pcodfq ζ2pcodfq

ζ1f“hp1ˆd1qpfq ζ2f“hp1ˆd0qpfq

hdomf :“hf pd1ˆ1q“hpd1ˆfq

hcodf :“hf pd0ˆ1q“hpd0ˆfq

which already looks like the naturality square. What is left to show is that after
passing to homotopy categories the above diagram commutes. We note that, in
order to show this, it suffices to prove that the homotopy category hp∆1 ˆ ∆1q is
the category obtained from the diagram

‚ ‚

‚ ‚

such that the two possible nontrivial compositions agree. This suffices because any
morphism ∆1 ˆ ∆1 Ñ D induces a functor on the respective homotopy categories,
which is then nothing else than a commutative square in hD: The objects of hp∆1ˆ

∆1q are the elements

∆1
0 ˆ ∆1

0 “ tpp0, p0q, pp0, p1q, pp1, p0q, pp1, p1qu

where we use the notation of the maps defined in (5). Moreover, we have

∆1
1 “ tp0Ñ0, p0Ñ1, p1Ñ1u, ∆1

2 “ tp0Ñ0Ñ0, p0Ñ0Ñ1, p0Ñ1Ñ1, p1Ñ1Ñ1u

The morphisms in hp∆1 ˆ ∆1q are given by equivalences classes of elements in
∆1

1 ˆ ∆1
1. We may depict most of these by

pp0, p0q pp1, p0q

pp0, p1q pp1, p1q

pp0Ñ0,p0Ñ1q

pp0Ñ1,p1Ñ1q

pp1Ñ1,p0Ñ1q

pp0Ñ1,p0Ñ0q

pp0Ñ1,p0Ñ1q

σ2

σ1

where

σ1 :“ pp0Ñ1Ñ1, p0Ñ0Ñ1q, σ2 :“ pp0Ñ0Ñ1, p0Ñ1Ñ1q
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showing commutativity of the whole square in hD. The remaining elements which
we have not depicted above are all equivalent to some identity morphism on one of
the four objects. This proves the claim.

7.3. p8, 1q-Categories. Grothendieck’s homotopy hypothesis has guided us to-
wards a sensible definition of 8-groupoids. How to continue from here on out?
Let us recall first that strict higher categories, say a strict 2-category, is simply
a Cat-enriched category C, i.e., C has a collection of objects and a category of
1-morphisms between these objects. This then also gives a recursive definition: A
strict d-category is a category enriched over a strict pd ´ 1q-category. We shall do
something similar, which one would liken to something along the lines of weak en-
richment (whatever that might mean precisely). In fact, an p8, 1q-category shall be
a category weakly enriched in p8, 0q-categories. More generally, an p8, dq-category
will be a category weakly enriched in p8, d´1q-categories. More precisely, an p8, 1q-
category will have a set of objects C0, and an 8-groupoid (space) of 1-morphisms
C1, which in turn has objects C1,0 which will yield 1-morphisms in C, 1-morphisms
C1,1 which constitute 2-morphisms in C and so on. Recursively, an p8, dq-category
will have a set of objects C0 and an p8, d ´ 1q-category of 1-morphisms C1. To
encode this rigorously, the first idea we might have is to add a higher categorical
layer by adding another simplicial level:

Definition 7.14. The category of simplicial spaces is the category of simplicial
presheaves Psh∆p∆q “ sSet∆

op
.

Remark 7.15. In the literature, a simplicial space X P Psh∆p∆q is also sometimes
called bisimplicial set. We will often, tacitly so, make use of the identifications

Pshp∆ˆ2q – Psh∆p∆q – Set∆
op

ˆ∆op

where ∆ˆ2 :“ ∆ ˆ ∆.

Notation 7.16. For X P sSet we may want to emphasize that X has only really one
slot where objects and morphisms can be plugged into. This is why we might be
tempted to write X “ X‚. On the other hand, for a simplicial space X P Psh∆p∆q

we have two such free slots, so we might want to write X “ X‚‚.

Notation 7.17. Instead of using

Psh∆p∆qp´,´q

as notation for the corresponding hom-set-functor, we shall simply write

Homp´,´q

if there is no danger of ambiguity. This will be more comfortable whenever we
consider hom-sets between simplicial presheaves.

There are two canonical ways to turn a simplicial set X P sSet into a bisimplicial
set:

Definition 7.18. Let πi : ∆ˆ2 Ñ ∆ for i “ 1, 2 be the corresponding projections
on the first and second component.

‚ π1 induces a functor π‹
1 : sSet Ñ Psh∆p∆q which takes a simplicial set X

and maps it to the bisimplicial set X‚‹ with bisimplices

pX‚‹qkl :“ Xk

‚ π2 induces a functor π‹
2 : sSet Ñ Psh∆p∆q which takes a simplicial set X

and maps it to the bisimplicial set X‹‚ with bisimplices

pX‹‚qkl :“ Xl
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Remark 7.19. The notation in the above definition is quite suggestive: X‚‹ tells
you that we view X as a bisimplicial set, but we really only have one slot where
stuff can be inserted and this slot is the first factor in the product.

Remark 7.20. Let us point out some details:
‚ Looking more closely at Definition 7.18 we find that

よ∆ˆ2prns, rmsq “ ∆n
‚‹ ˆ ∆m

‹‚

In particular, for any simplicial space X P Pshp∆ˆ2q we have

Homp∆n
‚‹ ˆ ∆m

‹‚, Xq – Xn,m

by the Yoneda Lemma (recall that Homp´,´q was introduced in Notation
7.17).

‚ From Example 4.14 we know that the category Psh∆p∆q is cartesian
closed. In particular, this yields that Psh∆p∆q is enriched over simpli-
cial sets by defining

MappX,Y q :“ HompX ˆ π‹
2よ∆, Y q

for all simplicial spaces X, where π2 : ∆ˆ2 Ñ ∆ is again the projection
onto the second factor. By the Yoneda Lemma we then have the following:

Mapp∆n
‚‹, Xq “ Homp∆n

‚‹ ˆ π‹
2よ∆, Y q – Yn‚

Recall that the injective model structure for Psh∆p∆q exists and that all objects in
Psh∆p∆qinj are cofibrant.

Applying the Yoneda embedding よ∆ to the commutative square

ra` bs rbs

ras r0spa

p0Ñ...Ña p0

paÑ...Ña`b

yields a commutative square of simplicial maps

∆a`b ∆b

∆a ∆0

However, since sSet is cocomplete, the corresponding pushout ∆a
š

∆0 ∆b exists
and therefore, by the respective universal property, induces a map

∆a
š

∆0 ∆b ∆a`b

Furthermore, if π1 : ∆ˆ2 Ñ ∆ is the projection onto the first factor, then applying
π‹
1 to the above morphisms lets us obtain a map of simplicial spaces:

∆a
‚‹

š

∆0
‚‹
∆b

‚‹ ∆a`b
‚‹

Definition 7.21. A Segal space is a simplicial space C : ∆op Ñ sSet which satisfies
the following conditions:

‚ Fibrancy : C is fibrant with respect to the injective model structure Psh∆p∆qinj.
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‚ Segal’s special ∆-condition: C is local with respect to the maps

∆a
‚‹

š

∆0
‚‹
∆b

‚‹ ∆a`b
‚‹

for all a, b P N.

Remark 7.22. Let us unravel the previous definition: As we have seen in the chap-
ter on left Bousfield localizations C being fibrant with respect to the old model
structure and then also demanding that C is local with respect to the given family
of maps will force C into a fibrant object with respect to the new model structure
obtained by Bousfield localization. The fibrancy condition could also be understood
as the aforementioned weak enrichment: Fibrant objects in Psh∆p∆qinj are all those
C P Psh∆p∆q such that the map C Ñ ‹ has the right lifting property with respect
to all trivial cofibrations in Psh∆p∆qinj:

D C

E ‹

» D

However, the existence of such a lift in particular implies the existence of a corre-
sponding lift objectwise. But this then implies that a Segal space must in particular
be a Kan complex at each simplicial level:

Λni Cm,‚

∆n

D

for all m,n P N and 0 ⩽ i ⩽ n.
On the other hand, Segal’s special ∆-condition tells us at which set of maps we

want to (left Bousfield) localize at. This condition demands that the induced maps

Mapp∆a`b
‚‹ , Xq Mapp∆a

‚‹

š

∆0
‚‹
∆b

‚‹, Xq

are trivial Kan fibrations in the Quillen model structure sSetQuillen. But then

Mapp∆a`b
‚‹ ,Cq – Homp∆a`b

‚‹ ˆ π‹
2よ∆,Cq – Ca`b P sSet

where we avoided, for practicality, to emphasize the free slot by Cpa`bq,‚. Analo-
gously,

Mapp∆a
‚‹

ž

∆0
‚‹

∆b
‚‹,Cq – Ca ˆC0

Cb

Hence C satisfies Segal’s special ∆-condition if and only if the morphisms

Ca`b Ca ˆC0
Cb

Cpp0Ñ...ÑaqˆCppaÑ...Ña`bq

are trivial Kan fibrations. This gives the correct notion of an up-to-equivalence
composition for our potential model of p8, 1q-categories, which is directly motivated
by Definition 7.1.

Theorem 7.23. There is a model structure on the category of simplicial spaces,
which we denote by SeSp, such that all objects are cofibrant and the fibrant objects
are precisely the Segal spaces. In fact, SeSp is given by the left Bousfield localization

SeSp “ LSpPsh∆p∆qinjq
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where S is the family of morphisms

∆a
‚‹

š

∆0
‚‹
∆b

‚‹ ∆a`b
‚‹

for all a, b P N.

7.3.1. Why are Segal spaces good candidates for p8, 1q-categories? Motivated yet
again by the construction of the nerve of a category, if C‚‚ is a Segal space, then
we view the vertices of C0 as the set of objects. For x, y P C0,0 we define

Cpx, yq :“ ∆0 ˆx
C0

C1 ˆ
y
C0

∆0

where the pullback is taken over the diagram

∆0 x
Ñ C0

dom
Ð C1

cod
Ñ C0

y
Ð ∆0

with dom :“ Cd1,‚ and cod :“ Cd0,‚. Note that Cpx, yq is, in particular, a homotopy
pullback, since C1‚ is fibrant (a Kan complex). The Kan complex Cpx, yq is viewed
as the p8, 0q-category of 1-morphisms from x to y. More generally, Cn is viewed as
the p8, 0q-category of n-tuples of composable morphisms together with a compo-
sition. The composition is the map Cn Ñ C1 determined by the order-preserving
function

p0Ñn : r1s Ñ rns, 0 ă 1 ÞÑ 0 ă n

More precisely, C1,0 is the set of 1-morphisms of C‚‚ and by using the zig-zag of
arrows

C1 ˆC0
. . .ˆC0

C1 Cn C1
» Cpp0Ñnq

we are able to define a composition

C1 ˆC0 . . .ˆC0 C1 C1

which is unique up to homotopy (after all we pick an arbitrary weak inverse from the
pullback into Cn). Concretely, we consider the commutative diagram of simplicial
sets

H Cn

∆0 Cpx0, . . . , xnq
pf1,...,fnq

»
Dk

where Cpx0, . . . , xnq is defined to be the iterated pullback

∆0 ˆ
x0

C0,‚
C1,‚ ˆ

x1

C0,‚
. . .ˆC0,‚ C1,‚ ˆ

xn
C0,‚

∆0

that results from the span

∆0 x0
Ñ C0

dom
Ð C1

cod
Ñ C0

x1
Ñ . . .

xn
Ð ∆0

The morphism k : ∆0 Ñ Cn exists, since the map to the right is a trivial fibration,
and the map to the left is a cofibration in the Quillen model structure on sSet.
Hence this diagram tells us that for any n-tuple

x0 x1 . . . xn
f1 fn

(after all this is the same as a map ∆0 Ñ Cpx0, . . . , xnq by the Yoneda Lemma)
there exists k P Cn,0 such that

´

Cpp0Ñ1q ˆ . . .ˆ Cppn´1Ñnq

¯

pkq “ pf1, . . . , fnq
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Composition is then defined by

fn . . . f1 :“ Cpp0Ñnqpkq

It is nice to think about these notions in a more geometric manner: Let us first
inspect the condition that

C2
»

ÝÑ C1 ˆC0
C1

is a trivial Kan fibration. The domain of this map is the space of 2-cells σ which
may be depicted by:

y

x z

f g

h

σ

The codomain C1ˆC0
C1, on the other hand, is the space of composable morphisms,

which may be depicted by:
y

x z

f g

The Segal condition then says that every such composable pair of morphisms pf, gq

can be filled out to a complete 2-cell:
y

x z

f g

d1pσq

σ

where d1 “ Cd1,0 “ Cpp0Ñ2q. We think of d1pσq as the composition of f and g, thus
we will often just write gf . We notice that neither σ nor d1pσq need to be unique
here, however, we will see that such a composition is unique up to homotopy. The
next condition is that

C3
»

ÝÑ C1 ˆC0
C1 ˆC0

C1

is a trivial Kan fibration. The domain of this map is the space of 3-cells which we
can depict by a tetrahedron (or pyramid)

x

z

w

y

g

f

h
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while the codomain C1 ˆC0
C1 ˆC0

C1 may be depicted by a triple of arrows
x

z

w

y

g

f

h

The Segal condition implies that any such triplet of arrows may be filled out to give
a complete 3-cell:

x

z

w

y

g

f

h

This assures that if we have three composable morphisms pf, g, hq, then it doesn’t
really matter in which order we compose, that is, phgqf „ hpgfq, which is witnessed
by the above 3-cell. Choosing pf, g, hq “ p1dompgq, g, hq, we in particular obtain that
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any two compositions of h and g are equivalent:
w

y

w

x
g

g

1w

h

Thus, we have established how composition works for the space of 1-morphisms
C1,‚. In particular, a 1-morphism or path in C1,‚ is an element in C1,1, i.e., a
2-morphism of C which is invertible up to weak equivalence. Composition of these
2-morphisms is achieved by means of the horn filling conditions of the Kan complex
C1,‚. A 3-morphism in C is then simply and element in C1,2 and so on. In summary:

C0‚ . . . space of objects of C

C0,0 . . . set of objects of C

C1,‚ . . . p8, 0q-category of 1-morphisms in C

Cn,‚ . . . p8, 0q-category of n-tuples of composable arrows in C

C1,0 . . . set of 1-morphisms of C

C1,k . . . set of pk ` 1q-morphisms of C

Cn,k . . . set of n-tuples of composable pk ` 1q-morphisms

Recall that π0 : Kan Ñ Set is the functor which takes a Kan complex X P Kan and
maps it to the coequalizer of the diagram

X1 X0

d0

d1

Definition 7.24. The homotopy category h1pCq of a Segal space C “ C‚‚ is the
(ordinary) category whose objects are given by the set C0,0 and whose morphisms
between objects x, y P C0,0 are

h1pCqpx, yq :“ π0Cpx, yq



137

“ π0

´

∆0 ˆx
C0

C1 ˆ
y
C0

∆0
¯

For x, y, z P C0,0 the following diagram induces composition of morphisms, as
weak equivalences induce bijections on π0:
´

∆0 ˆx
C0

C1 ˆ
y
C0

∆0
¯

ˆ

´

∆0 ˆ
y
C0

C1 ˆz
C0

∆0
¯

∆0 ˆx
C0

C1 ˆz
C0

∆0

∆0 ˆx
C0

C1 ˆC0 C1 ˆz
C0

∆0 ∆0 ˆx
C0

C2 ˆz
C0

∆0»

Cpp0Ñ2q

Lemma 7.25. Let C be a model category and suppose that we are given a lifting
problem

A C

B D

i p

in C, where i is a cofibration and p is a trivial fibration. Then any two lifts are left
homotopic.

Proof. Suppose that we have two lifts f, f 1 : B Ñ C for the above lifting problem.
We then consider the commutative diagram

B
š

B C

CylpBq B D

c0`c1
∇

»

f`f 1

jDζ

where CylpBq is a cylinder object for B and c0, c1 along with the weak equivalence
CylpBq Ñ B constitute the corresponding extra structure. Since this diagram
commutes by construction and the left vertical map is a cofibration, while the right
vertical map is a trivial fibration, we obtain a lift ζ : CylpBq Ñ C, which establishes
a left homotopy from f to f 1. □

Corollary 7.26. Let C be a Segal space and let f, f 1 P C1,0 be composable 1-
morphisms. Then any two choices for a composition of f and f 1 are homotopic,
that is, there exists F P C1,1 so that C1,d1pF q “ f and C1,d0pF q “ f 1. In particular,
composition of 1-morphisms is a well defined map in the corresponding homotopy
category.

Proof. This follows immediately from the previous proposition, since taking a com-
posite for f, f 1 boils down to the lifting problem

H C2

∆0 C1 ˆC0
C1

pf,f 1
q

»

□

Proposition 7.27 ([31]). For any Segal space C “ C‚‚ the homotopy category
h1pCq is a category.
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Proof. In order to verify associativity we produce particular choices of compositions
which give equal (not just homotopic) results. This is fully sufficient by the previous
corollary. Let k P C3,0 be such that

pCp0Ñ1 ˆ Cp1Ñ2 ˆ Cp2Ñ3qpkq “ pf, g, hq P Cpw, x, y, zq

Any such k determines compositions gf :“ Cd3,0pkq and hpgfq :“ Cd1,0pkq, as well
as hg :“ Cd0,0pkq and phgqf :“ Cd2,0pkq. Now let σ :“ Cd1,0pkq P C2,0, then σ
satisfies

Cd0,0pσq “ h, Cd1,0pσq “ phgqf, Cd2,0pσq “ gf

In particular, σ witnesses the identity hpgfq “ phgqf , as desired. Identities in
our category will be represented by 1x :“ Cs0,0pxq for all x P C0,0. To show that
f1w „ f for f P Cpw, xq, let k :“ Cs0,0pfq. Then

pCp0Ñ1 ˆ Cp1Ñ2qpkq “ p1w, fq, Cd1,0pkq “ f, Cd0,0pkq “ f, Cd1,0pkq “ 1w

and therefore f1w “ f . The other identity follows analogously. □

Example 7.28. Let C be an (ordinary) small category. Let us view its corre-
sponding nerve as the bisimplicial set NC‚‹. Then NC‚‹ is a Segal space and we
have an equivalence of categories

h1pNC‚‹q « C

Definition 7.29. Let C be a Segal space.
‚ A 1-morphism f P Cpx, yq is called invertible if its image under

Cpx, yq π0Cpx, yq
π0

is an isomorphism.
‚ Two 1-morphisms f, g P Cpx, yq are called homotopic, if they lie in the

same connected component of Cpx, yq, that is, if both these arrows rep-
resent the same equivalence class in π0Cpx, yq. In that case, we write
f „ g

Unfortunately, Segal spaces do not quite provide the correct notion of p8, 1q-
categories, albeit they provide a canonical composition that is unique up to weak
equivalence. There are two reasons for this: The first of these reasons is that C0,‚ is
a space rather than a set of objects. The second problem is that if we are given two
Segal spaces C,D, the set of natural transformations C Ñ D should be exactly
the collection of 8-functors from the 8-category C to the 8-category D (if we
assume Segal spaces are the correct model for p8, 1q-categories). We would expect
that the model structure on SeSp has as its set of weak equivalences exactly those
8-functors which are fully faithful and essentially surjective (to be defined below)
in a homotopical sense. In other words, we would want the weak equivalences of
SeSp to be exactly equivalences between 8-catgories.

Definition 7.30. Let C and D be Segal spaces. A natural transformation ζ : C Ñ

D is called Dwyer-Kan equivalence if
‚ the induced map h1pζq : h1pCq Ñ h1pDq on homotopy categories is essen-

tially surjective.
‚ for each pair of objects x, y in C the induced map Cpx, yq Ñ Dpζx, ζyq is

a weak equivalence.

Remark 7.31. We realize that the map h1pζq is well defined. Indeed, what we really
need to check is that for any equivalence class rf s P π0pC1q we have that rζ1,0pfqs
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is independent of the representative. But this follows from commutativity of the
square

C1,0 D1,0

C1,1 D1,1

ζ1,0

ζ1,1

where the upwards pointing vertical arrows are the maps C1,dj and D1,dj for j “

0, 1. Similarily, the induced map Cpx, yq Ñ Dpζx, ζyq is well defined by naturality
of ζ.

Definition 7.30 is of course motivated by the standard notion of an equivalence
between categories. We shall now work towards a model structure that incorporates
Dwyer-Kan equivalences as its weak equivalences.

Definition 7.32. For C‚‚ a Segal space let

Cequiv ãÑ C1

be the inclusion of the connected components of vertices that are invertible (see
Definition 7.29).

The identity morphisms (up to homotopy) of a Segal space are induced by the
degeneracy map Cs0‚ : C0‚ Ñ C1‚ and its 0-th component

Cs0,0 : C0,0 Ñ C1,0, x ÞÑ 1x

This therefore turns out to be an inclusion

C0 Ñ Cequiv

Definition 7.33. A Segal space C is called complete if the map C0 Ñ Cequiv is a
weak equivalence of simplicial sets.

The idea of the above definition is that if a morphism is an isomorphism then
it is already a morphism in C0. This is somewhat akin to what it means for an
ordinary category to be skeletal. Recall that a category is called skeletal if all its
isomorphisms are identities. However, any (ordinary) category is equivalent to a
skeletal one, so this is not really a restriction in general (see the Nlab article on
Skeleton).

Example 7.34. Let C be an (ordinary) category. The simplicial space NC‚‹ is a
complete Segal space if and only if there are no non-identity isomorphisms in C.

Yet again, we want to shift this into a model theoretic picture, encapsulating the
notion of complete Segal space by means of a left Bousfield localization. To this end,
let us consider the category Ip1q with two distinct objects and one isomorphism
between these. This category is called the walking isomorphism. If we map the
walking isomorphism into an arbitrary category C, we obtain all the isomorphisms
of C. More precisely, we have an isomorphism of categories

CIr1s pCˆqr1s–

where Cˆ is the maximal subgroupoid of C. Rezk, in his paper [31], then proved
the following non-trivial theorem:

Theorem 7.35. A Segal space C is a complete Segal space if and only if C is local
with respect to the (unique) morphism

NpIp1qq‚‹ ∆0
‚‹

https://ncatlab.org/nlab/show/skeleton#definition
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In other words, C is complete if and only if

RMapp∆0
‚‹, Cq RMappNpIp1qq‚‹, Cq

is a weak equivalence of simplicial sets.

In other words, we can make the following equivalent definition:

Definition 7.36. A complete Segal space is a simplicial space C : ∆op Ñ sSet
which satisfies the following conditions:

‚ Fibrancy : C is fibrant with respect to the model structure on SeSp (in
other words, C is a Segal space).

‚ Completeness condition: C is local with respect to the unique map (∆‚‹

is terminal)

NpIp1qq‚‹ Ñ ∆0
‚‹

Theorem 7.37. There is a cartesian model structure on the category of simplicial
spaces, denoted by CSS, in which all objects are cofibrant and the fibrant objects
are precisely the complete Segal spaces. In fact, CSS is given by the left Bousfield
localization

CSS “ LS1 pPsh∆p∆qinjq

where S1 is the family of morphisms

∆a
‚‹

š

∆0
‚‹
∆b

‚‹ ∆a`b
‚‹

along with the unique morphism

NpIr1sq‚‹ Ñ ∆0
‚‹

In particular, the collection of weak equivalences in the model category CSS is pre-
cisely given by the Dwyer-Kan equivalences.

Finally, we have the following definition:

Definition 7.38. An p8, 1q-category is a fibrant object in CSS, that is, a complete
Segal space.

The above theorem also tells us that the model category of complete Segal spaces
is a cartesian closed model category. This means that the internal hom functor
respects the given mdoel structure, i.e., it is a right Quillen bifunctor. Therefore,
we have a notion of a derived hom in the given model structure. Since all objects
in CSS are cofibrant, we have

RHompC,Dq » DC

for all complete Segal spaces D and all bisimplicial sets C, where DC denotes the
corresponding internal hom in bisimplicial spaces. In particular, for any pair of
8-categories C,D we get an 8-category of functors DC:

Definition 7.39. Let C,D be p8, 1q-categories (complete Segal spaces).
‚ An 8-functor (or p8, 1q-functor) from C to D is a natural transformation
C Ñ D.

‚ An 8-natural transformation (or p8, 1q-natural transformation) between
8-functors with domain C and codomain D is a homotopy h : Cˆ∆1

‚‹ Ñ
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D. The domain and codomain of the 8-natural transformation h is read
off of the commutative diagram

C ˆ ∆0
‚‹ C ˆ ∆1

‚‹ C ˆ ∆0
‚‹

C D C

–

Cˆjpd1q Cˆjpd0q

–h

as the bottom left and bottom right maps.

Remark 7.40. Let us study quickly why the definition above really yields the correct
notion of 8-functors: Let ζ : C Ñ D be an 8-functor between 8-categories. We
then, in particular, have maps on objects and 1-morphisms

ζ0,0 : C0,0 Ñ D0,0, ζ1,0 : C1,0 Ñ D1,0

We shall abuse notation and always write ζ instead of ζ0,0, ζ1,0, etc. whenever it is
clear from the context. A morphism pf : x Ñ yq P C1,0 is mapped to a morphism
ζf : ζx Ñ ζy, which follows from naturality of ζ:

C1,0 D1,0

C0,0 D0,0

coddomdomcod

ζ1,0

ζ0,0

In particular, functoriality follows from commutativity of the diagram

C1 ˆC0
C1 D1 ˆD0

D1

C2 D2

C1 D1

Cpp0Ñ1qˆCpp1Ñ2q Dpp0Ñ1qˆDpp1Ñ2q

ζ1ˆζ1

ζ2

Cpp0Ñ2q Dpp0Ñ2q

ζ1

More precisely, let k P C2,0 be such that

pCp0Ñ1 ˆ Cp1Ñ2qpkq “ pf, gq P Cpx, y, zq

or put geometrically
y

x z

f g

gf

k

Now ζ induces a 2-simplex ζk P D2,0 which produces the following identities

Dd0,0pζkq “ ζg, Dd1,0pζkq “ ζpgfq, Dd2,0pζkq “ ζf
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which follows from naturality:

C2,0 D2,0

C1,0 D1,0ζ

ζ

Rephrasing this geometrically yields

ζy

ζx ζz

ζf ζg

ζpgfq

ζk

and therefore ζk witnesses the identity ζpfgq “ ζgζf . The same procedure works
to show that ζ preserves identities.

Remark 7.41. Also the notion of 8-natural transformations is seen to have the
desired outcome. Passing to the homotopy 1-category results in a natural trans-
formation between the induced functors. This is analogous to the construction in
Remark 7.13. Indeed, any 8-natural transformation

C ˆ ∆0 C ˆ ∆1
‚‹ C ˆ ∆0

C D C

–

1ˆd1‚‹ 1ˆd0‚‹

h

ζ1:“hp1ˆd1‚‹q

–

ζ2:“hp1ˆd0‚‹q

yields, for every 1-morphism f P C1,0, a quadruple of maps

∆1
‚‹ ˆ ∆0 ∆1

‚‹ ˆ ∆1
‚‹ C ˆ ∆1

‚‹ D

∆0 ˆ ∆1
‚‹ ∆1

‚‹ ˆ ∆1
‚‹ C ˆ ∆1

‚‹ D

hfˆ1
1ˆd1‚‹

1ˆd0‚‹

hfˆ1
d1‚‹ˆ1

d0‚‹ˆ1

which in turn gives rise to a square of 1-morphisms in D

ζ1pdomfq ζ2pdomfq

ζ1pcodfq ζ2pcodfq

ζ1f ζ2f

hdomf

hcodf

Again, in order to show that this diagram commutes it is enough to show that
h1p∆1

‚‹ ˆ ∆1
‚‹q is the category whose formal graph is a commutative square. This

is immediate however, since ∆1
‚‹ ˆ ∆1

‚‹ is constant in the second simplicial direc-
tion and thus elements in p∆1

‚‹ ˆ ∆1
‚‹q1,1 “ ∆1

1 ˆ ∆1
1 really just tell us that both

compositions are identical.

From the previous considerations we readily obtain the following:



143

Corollary 7.42. Let C,D be p8, 1q-categories. Then any 8-functor ζ : C Ñ D

induces a functor

h1ζ : h1C Ñ h1D

In particular, any 8-natural transformation h : ζ1 Ñ ζ2 induces a natural transfor-
mation

h1phq : h1ζ1 Ñ h1ζ2

7.3.2. The Rezk nerve. We have seen that the ordinary nerve operation applied
to some category C and then viewed as a simplicial space does not in general
yield a complete Segal space. However, since complete Segal spaces are our cho-
sen model for p8, 1q-categories we should better provide for a proper inclusion of
the category of (small) categories into the the full subcategory of complete Segal
spaces. Luckily enough, there is an improved version of the nerve functor called
the Rezk nerve: Let pC,Wq be a pair consisting of a category C together with a
wide subcategory W of weak equivalences. The simplicial space N8pC,Wq, called
Rezk nerve or classification diagram of pC,Wq, which, if evaluated in the first
simplicial direction by rms P ∆ yields as a simplicial set the (usual) nerve of the
wide subcategory wepCrmsq Ă Crms which has as its morphisms only those natural
transformations which are weak equivalences objectwise. In other words,

pN8pC,Wqqm :“ NpwepCrmsqq

Example 7.45. For a category C we may apply the Rezk nerve to the pair pC,Cˆq,
where Cˆ is the maximal subgroupoid of C. This yields a functor

N8 : Cat Ñ Psh∆p∆q, C ÞÑ NpisopC‚qq‚

The preceding example is very important:

Theorem 7.46 ([31] Theorem 3.7). The Rezk nerve

N8 : Cat Ñ Psh∆p∆q

is fully faithful. Moreover, there are natural isomorphisms of bisimplicial sets

N8pC ˆ Dq – N8C ˆ N8D, N8pDCq – pN8DqN
8C

for categories C,D. In particular, a functor f : C Ñ D is an equivalence of cate-
gories if and only if N8f is a weak equivalence of bisimplicial sets (wrt. the injective
model structure).

Remark 7.47. It may be shown that N8pC,Wq satisfies Segal’s special ∆-conditions
(this follows from the 2-out-of 3 property, see [8]). Moreover, N8pC,Wq is complete
if and only if the homotopical category C is saturated, that is, a morphism in C is
a weak equivalence if and only if it is an isomorphism in the homotopy category.
However, N8pC,Wq does not necessarily satisfy the fibrancy condition to make it
into a complete Segal space. Nonetheless, treating N8pC,Wq as an 8-category,
we obtain the following interpretation:

‚ Objects are precisely the elements in

N8pC,Wq0,0 “ NpWq0 “ ObC

‚ 1-morphisms are elements in

N8pC,Wq1,0 “ NpwepCr1sqq0 “ MorC

which is what we would expect of any reasonable way to embed an arbi-
trary category into the setting of 8-categories.

If we really want to realize N8pC,Wq as an p8, 1q-category, we have to force the
fibrancy condition by taking some fibrant replacement of N8pC,Wq. The resulting
complete Segal space will again be denoted by N8pC,Wq.
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7.4. p8, 2q-Categories. Before getting into the meat of this section, let us start
off by recalling the notion of bicategory : Let us briefly recall the definition of a
bicategory :

Definition 7.48. A bicategory is a tuple

pB, 1, c, α, λ, ρq

comprised of the following data:
‚ B comes equipped with a collection of objects ObB “ B0.
‚ For each pair of objects b, b1 P B we have a hom-category Bpx, yq. The

identity morphism in Bpx, yq for an object f P Bpx, yq will be denoted by
1f .

‚ The objects in Bpx, yq are called 1-morphisms, and the collection of all
such 1-morphisms is denoted by B1. The morphisms in the category
Bpx, yq are called 2-morphisms.

‚ We have composition functors

c : Bpb2, b3q ˆ Bpb1, b2q Ñ Bpb1, b3q

pg, fq ÞÑ g□f

pβ, αq ÞÑ βα

for all objects b1, b2, b3, b4 P B0 and unit functors

1b : ‹ Ñ Bpb, bq

from the terminal category ‹ into the category Bpb, bq, which pick out an
identity 1-morphism 1b for all b P B0.

‚ We have natural isomorphisms

Bpb3, b4q ˆ Bpb2, b3q ˆ Bpb1, b2q Bpb3, b4q ˆ Bpb1, b3q

Bpb2, b4q ˆ Bpb1, b2q Bpb1, b4q

Bpb1, b2q ˆ ‹ ‹ ˆ Bpb1, b2q

Bpb1, b2q ˆ Bpb1, b1q Bpb1, b2q Bpb2, b2q ˆ Bpb1, b2q Bpb1, b2q

cˆid

idˆc

c

c

αb1,b2,b3,b4

idˆ1b1
–

c

1b2
ˆid –

ρb1,b2

λb1,b2

In particular, this gives us invertible 2-morphisms

αhgf : ph□gq□f –
Ñ h□pg□fq

ρf : f□1domf
–
Ñ f

λf : 1codf□f
–
Ñ f
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‚ In particular, we demand that the following diagrams commute:

ppk□hq□gq□f pk□ph□gqq□f

pk□hq□pg□fq k□pph□gq□fq

k□ph□pg□fqq

pg□1domf q□f g□p1codf□fq

gf

α

α 1kα

α

α1f

ρ1f 1gλ

α

Remark 7.49. Any monoidal category C may be interpreted as a bicategory BC as
follows:

‚ BC has only one object ‹.
‚ The category of 1-morphisms BCp‹, ‹q is defined to be C.
‚ The composition law is given by the tensor product:

b : C ˆ C Ñ C

Conversely, any bicategory with only a single object is canonically a monoidal
category.

An p8, 2q-category will be a homotopical analogue of a bicategory with infinitely
many layers of morphisms, yet only two of these layers are non-trivial. To this end,
we continue in the exact same manner as in the previous chapter. First we shall
add another categorical layer by adding one more simplicial level:

Definition 7.50. The category of bisimplicial spaces is the category of presheaves
Psh∆p∆ˆ2q.

Notation 7.51. We shall again write Homp´,´q for the hom-set bifunctor of the
category of bisimplicial spaces.

We may then consider the projections πi : ∆ˆ3 Ñ ∆ for i “ 1, 2, 3. These give
rise to maps

sSet Psh∆p∆ˆ2q
π‹
i

Extending on the notation we introduced in the previous chapter, a bisimplicial
space X P Psh∆p∆ˆ2q may be written as X “ X‚‚‚. For the simplicial set ∆n we
then have three possibilities of viewing it as a bisimplicial space: ∆n

‚‹‹,∆
n
‹‚‹ and

∆n
‹‹‚. The category of bisimplicial spaces is enriched over sSet by defining

MappX,Y q :“ HompX ˆ π‹
3よ∆, Y q

for all X,Y P Psh∆p∆ˆ2q. We may then apply π‹
1 and π‹

2 to the induced maps

∆a
š

∆0 ∆b ∆a`b
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so as to obtain morphisms

∆a
‚‹‹

š

∆0
‚‹‹

∆b
‚‹‹ ∆a`b

‚‹‹

∆a
‹‚‹

š

∆0
‹‚‹

∆b
‹‚‹ ∆a`b

‹‚‹

φa,b‚‹‹

φa,b‹‚‹

In particular, both ∆0
‚‹‚ and ∆0

‹‚‹ are terminal, so there are unique morphisms

NpIr1sq‚‹‹ ∆0
‚‹‹

NpIr1sq‹‚‹ ∆0
‹‚‹

c‚‹‹

c‹‚‹

Definition 7.52. A complete double Segal space is a bisimplicial space C : p∆ˆ2qop Ñ

sSet such that
‚ Fibrancy : C is fibrant with respect to the injective model structure on

Psh∆p∆ˆ2q.
‚ Segal’s special ∆ and completeness condition: C is local with respect to

the maps

p∆a
‚‹‹

š

∆0
‚‹‹

∆b
‚‹‹q ˆ ∆c

‹‚‹ ∆a`b
‚‹‹ ˆ ∆c

‹‚‹

p∆a
‹‚‹

š

∆0
‹‚‹

∆b
‹‚‹q ˆ ∆c

‚‹‹ ∆a`b
‹‚‹ ˆ ∆c

‚‹‹

NpIr1sq‚‹‹ ∆0
‚‹‹

∆c
‚‹‹ ˆ NpIr1sq‹‚‹ ∆c

‚‹‹ ˆ ∆0
‹‚‹

φa,b‚‹‹ˆ∆c‹‚‹

φa,b‹‚‹ˆ∆c‚‹‹

c‚‹‹

∆c‚‹‹ˆc‹‚‹

for all a, b, c P N.

Remark 7.53. One may certainly drop the completeness conditions to arrive at a
notion of double Segal space.

Remark 7.54. Let us break down the main ideas of Definition 7.52: Segal’s special
∆ condition boils down to the statement that both Cc‚‚ and C‚c‚ are Segal spaces,
i.e., both maps

Cc,a`b Cc,a ˆCc,0 Cc,b

Ca`b,c Ca,c ˆC0,c
Cb,c

»

»

are trivial Kan fibrations for all a, b, c P N. The completeness condition boils down
to saying that both C‚0‚ and Cc‚‚ are complete Segal spaces for all c P N.

Theorem 7.55. There is a model structure CSSuple
2 on the category of bisimplicial

spaces in which the fibrant objects are precisely the complete double Segal spaces.
In fact, this model structure is obtained by means of the left Bousfield localization

CSSuple
2 :“ LSpPsh∆p∆ˆ2qinjq

where S is the family of morphisms as given in Definition 7.52.
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Yet again we find ourselves not fully satisfied with (complete) double Segal
spaces. The problem here is similar as the one we had with Segal spaces. A
double Segal space encodes the information of a homotopical double category. Re-
call that a double category has objects, horizontal morphisms, vertical morphisms
and 2-morphisms (squares). Suppose C is a (complete) double Segal space. We
think of C0,0 as the space of objects, C0,1 as the space of vertical morphisms, C1,0

as the space of horizontal morphisms, and C1,1 as the space of squares. Indeed, the
2-morphisms (squares) are encoded by diagrams of the form:

C0,0 Q Cd1,d1pψq Cd0,d1pψq P C0,0

C0,0 Q Cd1,d0pψq Cd0,d0pψq P C0,0

Cd1,1pψqPC0,1

C1,d0 pψqPC1,0

C1,d1 pψqPC1,0

Cd0,1pψqPC0,1ψPC1,1

On the other hand, when we picture a 2-morphism in a 2-category we liken it
more to something as

‚ ‚

In other words, we do not want to have non-trivial vertical morphisms, but only
horizontal ones. Therefore, it is natural to demand or try to force the simplicial
space C0‚‚ to be essentially constant. Yet again, we shall encode this by means
of a left Bousfield localization. For m “ prm1s, rm2sq P ∆ˆ2, let pm P ∆ˆ2 be the
bisimplex defined by

r pmis “

#

r0s, if Dj ă i : with mj “ 0

rmis, else

for i “ 1, 2. More concretely, if m1 “ 0, then pm “ 0, but if m1 ‰ 0, then m “ pm.
This gives rise to a canonical map

m pm

which maps mi ÞÑ pmi for all i. In turn, we may plug this map into the functor
π‹
1,2よ∆ˆ2 , where π1,2 : ∆ˆ3 Ñ ∆ is the projection onto the first two factors, to give

us a morphism
π‹
1,2よ∆ˆ2m π‹

1,2よ∆ˆ2 pm

Definition 7.56. A 2-fold complete Segal space is a bisimplicial space C : p∆ˆ2qop Ñ

sSet such that
‚ C is fibrant with respect to the model structure as given in Theorem 7.55.
‚ C is local with respect to the family of morphisms

π‹
1,2よ∆ˆ2m π‹

1,2よ∆ˆ2 pm

for all m P ∆ˆ2.

Remark 7.57. Dropping yet again the completeness condition in the above definition
yields the notion of a d-fold Segal space.

Remark 7.58. C being local with respect to the above family of maps means that
the induced maps

RMappπ‹
1,2よ∆ˆ2 pmq RMappπ‹

1,2よ∆ˆ2m,Cq
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are weak equivalences of simplicial sets. However, this exactly boils down to saying
that we have weak equivalences C0,m,‚

»
Ñ C0,0,‚ for all m P N. This is what we

meant by saying that C0,‚,‚ is essentially constant.

Theorem 7.59. There is a model structure CSSglob
2 on the category of bisimplicial

spaces in which the fibrant objects are precisely the 2-fold complete Segal spaces. In
fact, this model structure is obtained by means of the left Bousfield localization

CSSglob
2 :“ LSpCSSuple

2 q

where S is the family of morphisms as given in Definition 7.56.

Remark 7.60. The model structure on CSSglob
2 is referred to as the globular model

structure, while the model structure on CSSuple
2 is called the multiple model struc-

ture.

Definition 7.61. An p8, 2q-category is a fibrant object in CSSglob
2 .

In a 2-fold Segal space we have

C0,0 Q Cd1,d1pψq Cd0,d1pψq P C0,0

C0,0 Q Cd1,d0pψq Cd0,d0pψq P C0,0

Cd1,1pψqPC0,1»C0,0

C1,d0 pψqPC1,0

C1,d1 pψqPC1,0

Cd0,1pψqPC0,1»C0,0ψPC1,1

By the conditions imposed on what it means to be a 2-fold Segal space, the dotted
vertical arrows are essentially forced to be just identity maps, up to homotopy, since
C0,1,‚ » C0,0,‚.

Definition 7.62. The homotopy bicategory h2C of a 2-fold (complete) Segal space
C “ C‚‚‚ is the bicategory which has as objects the set C0,0,0 and for x, y P C0,0,0

the hom-category

h2Cpx, yq :“ h1pCpx, yqq

where Cpx, yq‚‚ is the complete Segal space defined by

∆0 ˆx
C0,‚,‚

C1,‚,‚ ˆ
y
C0,‚,‚

∆0

where ∆0 denotes the terminal object in Psh∆p∆ˆ2q. Horizontal composition is
then defined by means of the following dotted arrow

´

∆0 ˆx
C0,‚,‚

C1,‚,‚ ˆ
y
C0,‚,‚

∆0
¯

ˆ

´

∆0 ˆ
y
C0,‚,‚

C1,‚,‚ ˆz
C0,‚,‚

∆0
¯

´

∆0 ˆx
C0,‚,‚

C1,‚,‚ ˆz
C0,‚,‚

∆0
¯ ´

∆0 ˆx
C0,‚,‚

C1,‚,‚ ˆC0,‚,‚
C1,‚,‚ ˆz

C0,‚,‚
∆0

¯

∆0 ˆx
C0,‚,‚

C2,‚,‚ ˆz
C0,‚,‚

∆0

»

Remark 7.63. According to [8] the previous definition indeed yields a bicategory.
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7.5. p8, dq-Categories. At this point the idea for p8, dq-categories should be clear.
We add as many new simplicial layers as needed so as to capture all the necessary
complexity of an p8, dq-category.

Definition 7.64. A d-dimensional simplicial space is a functor X : p∆ˆdqop Ñ

sSet. The category of d-dimensional simplicial spaces is the category of simpli-
cial presheaves Psh∆p∆ˆdq.

Notation 7.65. It is clear now that notation of the form

∆n
‚‹...‹, ∆n

‹‚...‹, . . .

is not so lucid anymore. Hence we shall introduce the following: Let A Ă t1, . . . , du

and consider the functor category ∆A :“ FunpA,∆q, where A is viewed as a discrete
category. There is an isomorphism of categories

∆A ∆ˆ|A|–

which takes a functor n : A Ñ ∆ to the multisimplex pnpaqqaPA. Essentially, ∆A

is the corresponding sub-product of ∆ˆd, where the product is only taken over the
elements of A. We may then consider the projection π∆A : ∆

ˆd Ñ ∆A and define
the map j∆A as the composition:

∆A Pshp∆Aq Pshp∆ˆdq Psh∆p∆ˆdq
よ π‹

∆A τ‹
∆

where τ∆ : ∆ˆd ˆ ∆ Ñ ∆ denotes the projection onto the last factor.
In particular, if π∆,k : ∆ˆd Ñ ∆ is the projection onto the k-th factor (i.e.

π∆,k “ π∆tku), then define the composition

∆ sSet Pshp∆ˆdq Psh∆p∆ˆdq
よ π‹

∆,k τ‹
∆

to be j∆,k. Also, for future reference, ifA Ă t1, . . . , du, then defineAc :“ t1, . . . , duzA
to be the complement of A in t1, . . . , du. With this notation in hand, we may for
example define partial evaluation of X P Psh∆p∆ˆdq at an object n P ∆A denoted
Xpnq P Psh∆p∆Ac

q. Moreover, we may sometimes just write j for the above embed-
ding without referring to the explicit subfactor, if there is no danger of ambiguity.

Yet again the commutative square

ra` bs rbs

ras r0spa

p0Ñ...Ña p0

paÑ...Ña`b

induces maps

j∆,kras
š

j∆,kr0s j∆,krbs j∆,kra` bs
φa,b

Moreover, for each 1 ⩽ k ⩽ d there is a unique map

Ek j∆,kr0s
ck

where

Ek :“ j∆,kNpIr1sq
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Finally, for a multisimplex m P ∆ˆd define a multisimplex pm P ∆ˆd with compo-
nents

r pmis “

#

r0s, if Dj ă i : with mj “ 0

rmis, else

This yields canonical maps
m pm

and applying the functor j : ∆ˆd Ñ Psh∆p∆ˆdq, we get morphisms

jm j pm

Definition 7.66. A d-fold complete Segal space is a fibrant object C P Psh∆p∆ˆdqinj
such that

‚ Segal’s special ∆-condition: C is local with respect to the family of maps

jn ˆ

´

j∆,kras
š

j∆,kr0s j∆,krbs
¯

jn ˆ j∆,kra` bs
jnˆφa,b,k

for all a, b P N,n P ∆tku
c

and for all 1 ⩽ k ⩽ d, where we recall that
tkuc :“ t1, . . . , duztku.

‚ Completeness condition: C is local with respect to the family of maps

jn ˆ Ek jn ˆ j∆,kr0s
jnˆck

for all 1 ⩽ k ⩽ d and n P ∆Ak´1 , where Ak´1 :“ t1, . . . , k ´ 1u.
‚ Globularity : X is local with respect to the family of maps

jm j pm

for all multisimplices m P ∆ˆd.

Remark 7.67. There are obvious definitions for what d-fold Segal spaces, d-uple
Segal spaces, d-uple complete Segal spaces are.

Remark 7.68. Recall that any category of presheaves is cartesian closed with the
induced cartesian structure from Set. This implies that the product c ˆ ´ is a
left adjoint functor (for any object c in such a presheaf category) and therefore
preserves colimits. In particular, we have

jn ˆ

´

j∆,kras
ž

j∆,kr0s

j∆,krbs
¯

– jpn, aq
ž

jpn,0q

jpn, bq

for all n P ∆tku
c

and all ras, rbs P ∆, where pn, aq is the multisimplex t1, . . . , du Ñ

∆ such that pn, aq|tkuc “ n and pn, aq|tku “ ras and analogously for pn, bq. In
particular, this implies that Segal’s special ∆-condition boils down to there being
weak equivalences

Cpn, a` bq Cpn, aq ˆCpn,0q Cpn, bq»

The completeness condition, on the other hand, boils down to saying that each
bisimplicial space Cpn,´,0,´q, with 0 P ∆ˆpd´kq the zero simplex and n P ∆Ak , is
a complete Segal space. The globularity condition forces that if the k-th component
of the multisimplex m P ∆ˆd is 0, then we have a weak equivalence

Cm1,...,mk´1,0,...,0,‚ Cm,‚
»
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Theorem 7.69. There are model structures CSSglob
d and CSSuple

d on the category of
d-dimensional simplicial spaces in which the fibrant objects are precisely the d-fold
complete Segal spaces and the d-uple complete Segal spaces, respectively. Both these
model structures are defined by means of the corresponding left Bousfield localiza-
tions.

Definition 7.70. An p8, dq-category is a fibrant object in CSSglob
d (or a fibrant

object in CSSuple
d if we distinguish between globular infinity categories and multiple

infinity categories).

Notation 7.71. We shall write

Catglob
p8,dq

:“ CSSglob
d

Catuple
p8,dq

:“ CSSuple
d

In particular, for d “ 0 we have

Catp8,0q :“ Grpd8 :“ sSetQuillen

7.5.1. Interpretation of d-fold Segal spaces as higher categories. How exactly does
a d-fold complete Segal space really encode what it should mean to be an p8, dq-
category? The first condition in Definition 7.66 means that there are d different
directions in which we can compose. An element of Ck,0, with k P ∆ˆd, should
be thought of as composition consisting of ki morphisms in the i-th direction. The
third condition (globularity condition) ensures that any d-morphism has as source
and target two pd´1q-morphisms which themselves have the same source and target
(up to homotopy). In general, if we have a d-fold (or d-uple) Segal space C, we
should think of the set of 0-simplices of the simplicial set C0, with 0 P ∆ˆd the
zero-multisimplex, as the objects of our category, and vertices of the simplicial set
C1i,0d´i

as i-morphisms for 1 ⩽ i ⩽ d, where 1i P ∆t1,...,iu with 1ipjq “ 1 for all
j, and 0d´i P ∆ˆpd´iq the corresponding zero-multisimplex. In the case of an uple
p8, dq-category, we have several different kinds of i-morphisms. Indeed, for each
subset A Ă t1, . . . , du with |A| “ i, the vertices of the simplicial set C1A,0d´|A|

also form i-morphisms, where 1A P ∆A with 1Apaq “ 1 for all a. In the globular
case, however, the vertices of C1i,0d´i

are the only i-morphisms. In both cases,
the vertices of the Kan complex C1d yield the collection of d-morphisms in C

and then higher morphisms are given by the morphisms of this Kan complex. In
particular, pd ` 1q-morphisms in C are given by elements of the set C1d,1, while
pd` 2q-morphisms are given by elements C1d,2 and so on.

Example 7.72. A 3-morphism in a tricategory may be depicted as

‚ ‚
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whereas a 3-morphism in a 3-fold Segal space C (an element of the set C1,1,1,0)
may be depicted by

‚ ‚

‚ ‚

‚ ‚

‚ ‚

PC0,1,0

PC0,0,1

PC0,1,0

PC0,0,1

PC1,0,0

PC1,0,0

PC0,1,0

PC1,0,0

PC1,0,0

PC0,0,1

PC0,0,1

PC0,1,0

PC1,1,0

PC1,1,0

PC1,0,1

PC1,0,1

PC0,1,1 PC0,1,1PC1,1,1

Here the dotted arrows are vertices in C0,1,1 » C0,0,1 » C0,1,0 » C0,0,0, while the
dashed arrows are vertices in C1,0,1 » C1,0,0. Thus contracting along the dotted and
dashed arrows, we get to the picture of a 3-morphism in an arbitrary tricategory.

Definition 7.73. The homotopy category of a d-fold Segal space C is the (ordinary)
category h1C, which has as objects the vertices of C0 for 0 P ∆ˆd. For each
x, y P C0, we let

Cpx, yq :“ ∆0 ˆx
C01

C11 ˆ
y
C01

∆0

be the pd ´ 1q-fold Segal space of morphisms from x to y, where 11,01 P ∆t1u are
the evident simplices in the first simplicial direction in the product ∆ˆd. The set
of morphisms

ph1Cqpx, yq

from x to y is then given as the set of isomorphism classes of objects in h1pCpx, yqq,
which is already defined by induction. Composition is defined using the Segal
condition in the first index.

Definition 7.74. The homotopy bicategory h2C of a d-fold (complete) Segal space
C is the bicategory which has as objects the vertices of C0 for 0 P ∆ˆd and for
x, y P C0 the hom-category

h2Cpx, yq :“ h1pCpx, yqq

is the homotopy 1-category of the pd´ 1q-fold Segal space Cpx, yq defined by

∆0 ˆx
C0S

C1S ˆ
y
C0S

∆0

where S “ t1, 3, 4, . . . , du Ă t1, 2, . . . , du and 0S P ∆S is the 0-multisimplex, while
1S P ∆S is given by 1Spsq “ r0s if s ‰ 1 and 1Sp1q “ r1s. Here ∆0 denotes the
terminal object in Psh∆p∆ˆ2q. Horizontal composition is then again defined by
means of the Segal condition in the second argument.
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Remark 7.75. More generally, if C is an p8, dq-category, then we can define a
d-category hdC as follows:

‚ For k ă d, the k-morphisms of hdC are the k-morphisms of C.
‚ The d-morphisms of hdC are given by isomorphism classes of d-morphisms

in C.
In [24] Lurie states that this construction can be characterized by a universal prop-
erty: Let D be a d-category, which we can regard as an p8, dq-category which has
only identity k-morphisms for k ą d. Then functors (of d-categories) from hnC to
D can be identified with functors (of p8, dq-categories) from C Ñ D, that is,

HompD, hdCq « RHompD,Cq

Definition 7.76. A morphism ζ : C Ñ D of d-fold (d-uple) Segal spaces is a Dwyer-
Kan equivalence if

‚ the induced functor h1ζ : h1C Ñ h1D is essentially surjective.
‚ for each pair of objects x, y in C, the induced morphism Cpx, yq Ñ

Dpζx, ζyq is a Dwyer Kan equivalence of pd´ 1q-fold Segal spaces.

Remark 7.77. The p8, d´ 1q-category Cpx, yq in the above definition is called the
p8, d´ 1q-category of morphisms in C from x to y.

7.5.2. Truncation, Extension and Loopings. Given an p8, dq-category, for k ⩽ d,
we may consider its p8, kq-truncation, or k-truncation, which is the p8, kq-category
obtained by discarding all the non-invertible m-morphisms for k ă m ⩽ d.

Definition 7.78. The k-truncation Tk : SeSpd Ñ SeSpk sends a multisimplicial space
C to

TkC :“ C0tk`1,...,du

where 0tk`1,...,du P ∆tk`1,...,du is the corresponding zero-multisimplex.

Remark 7.79. If C is complete, then its k-truncation TkC is complete.

If we have an p8, dq-category, then we can always promote this to an p8, d` 1q-
category by letting the pn` 1q-morphisms be only identities.

Definition 7.80. The extension functor E : SeSpd Ñ SeSpd`1 sends a multisimplicial
space C to the mutisimplicial space

EC P Psh∆p∆ˆpd`1qq

that is constant with respect to the new factor in the product ∆ˆpd`1q.

Lemma 7.81. If C is a complete d-fold Segal space, then EC is a complete pd` 1q-
fold Segal space.

Proof. See [8]. □

Lemma 7.82. The extension functor E is left adjoint to the d-th truncation functor
Td, that is, we have a diagram of adjunctions

SeSpd SeSpd`1

E

Td

%

Proof. It suffices to show that we have an adjunction on representables, since E is
cocontinuous: However, for each multisimplex n “ pn1, . . . , nd`1q P ∆ˆd ˆ ∆ we
have

HompEよn,Cq – Cpn1, . . . , nd, 0, nd`1q – Hompよn,TdCq

where よ : ∆ˆd ˆ ∆ Ñ Psh∆p∆ˆdq is the Yoneda embedding. □
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Definition 7.83. Let C be a d-fold Segal space, and let x be an object in C, that
is, x is a vertex in C0.

‚ The looping of C at x is the pd´ 1q-fold Segal space

ΩxC :“ Cpx, xq :“ ∆0 ˆx
C01

C11
ˆx

C01
∆0

‚ For 1 ⩽ k ⩽ d, the k-fold iterated looping of C at x is the pd ´ kq-fold
Segal space

ΩkxC :“ ΩxpΩk´1
x Cq

where we view x as a trivial k-morphism via the degeneracy maps, and
Ω0
xC :“ C.

7.6. Symmetric Monoidal p8, dq-categories. When we were concerned with
defining p8, dq-categories, the main idea was to add extra simplicial layers, i.e.,
every simplicial layer, say the i-th, encoded the notion of a non-trivial space of
i-morphisms. On the one hand this was possible since simplicial sets are generaliza-
tions of (small) categories (after all we have a fully faithful embedding Cat Ñ sSet).
On the other hand, the combinatorial nature of simplicial sets allowed us to work
with these notions rather comfortably. In order to encapsulate the notion of sym-
metric monoidality a similar machinery will be at play. This time we shall not
resort to the simplex category ∆ as the underlying source of structure, but rather
make use of Segal’s Gamma-category Γ :

Definition 7.84. Segal’s Gamma category Γ is the opposite category of the skeleton
of the category of finite pointed sets Fin‹, which has as objects the finite pointed
sets xly :“ t‹, 1, . . . , lu for l P N and morphisms are just functions xly Ñ xky which
fix ‹. In other words,

Γ :“ Finop
‹

Lemma 7.85. Any morphism g in Fin‹ may be written as a composition

g “ f ˝ σ

where f is a non-decreasing function, while σ is a permutation (bijection).

Proof. Take a morphism as below

‹ ‹

‚ ‚

‚ ‚

‚ ‚

‚ ‚

‚

and draw the dotted line so far to the right so that there are no more intersections
between the arrows to the right of the dotted line. Taking the morphism that
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results from cutting off to the right of the dotted line yields an order preserving
morphism f , while the morphisms resulting from cutting off everything to the left
of the dotted arrow results in a permutation σ. □

We shall see that certain kinds of functors C : Γ op Ñ Catp8,dq will give the
correct notion of symmetric monoidal p8, dq-categories. To this end, we consider
the maps

δi : xmy Ñ x1y, j ÞÑ δij

in Fin‹, where δij is the Kronecker-δ with δij “ ‹ for i ‰ j. Letting jΓ be the
composition

Γ PshpΓ q Psh∆pΓ q
よΓ π‹

∆

we may embed the morphisms δi and then make use of the universal property of
the coproduct to obtain the dashed arrow

jxmy
m
š

j“1

jx1y

jx1y jx1y

jδi

where we have again just written j instead of jΓ , since there is no danger of am-
biguity. Since Psh∆pΓ q is yet again simplicially enriched in the usual manner, we
may look at the induced morphism

Mappjxmy,Cq – Cxmy pCx1yqm – Mapp
m
š

j“1

jx1y,Cq
pδ!1,...,δ

!
mq

Where δ!i :“ Cδi. In particular, for every l P N there is a map in Fin‹ with

φ :“ φl : xly Ñ x1y, ‹ ‰ j ÞÑ 1

The induced map φ! :“ Cφ will be responsible to encode multiplication:

Cxly Ñ Cx1y

In fact, by means of a left Bousfield localization we will force the maps Cxmy Ñ

pCx1yqm to be weak equivalences so that the zig-zag of morphisms

pCx1yqm Cxmy Cx1y
» φ!

will give rise to the notion of thinking of Cxmy as the space of m-tuples that may
be multiplied, while φ! will be the multiplication operation itself.

Definition 7.86. A symmetric monoidal p8, dq-category is a functor C : Γ op Ñ

Psh∆p∆ˆdq such that
‚ C is a fibrant object with respect to the injective model structure on

Psh∆p∆ˆd ˆ Γ qinj.
‚ C is local with respect to all the maps in Definition 7.66 (where we take

the tensor product of each of these maps with the identity on jxly for all
l P N).

‚ Segal’s special Γ -condition: C is local with respect to all the maps

jn ˆ
l

š

i“1

jx1y jn ˆ jxly
jnˆσl
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for all n P ∆ˆd and l P N.
If C is a symmetric monoidal p8, dq-category, then we will call Cx1y the (underly-
ing) symmetric monoidal p8, dq-category.

Remark 7.87. Let C be a symmetric monoidal p8, dq-category. Let us elaborate
on what this entity really is about. First of all the partial evaluation Cxly is an
p8, dq-category for all choices l P Γ . The statement that C satisfies Segal’s special
Γ -condition boils down to the following: Note first that

jn ˆ

l
ž

i“1

jx1y –

l
ž

i“1

jpn, x1yq

which follows from cocontinuity of jn ˆ ´ (after all this is a left adjoint) and
from the explicit Similarily, jn ˆ jxly – jpn, xlyq. Therefore, applying the Yoneda
Lemma, Segal’s special Γ -condition amounts to saying that the maps

Cpn, xlyq Cpn, x1yql
»

are weak equivalences of simplicial sets for all n P ∆ˆd and for all xly P Γ . In
particular, for l “ 0 we have x0y :“ x‹y, and therefore we get a weak equivalence

MappH,Cq – ‹ Cpn, x‹yq
»

since
0

š

i“1

jx1y :“ H, the initial simplicial presheaf. This forces all spaces Cpn, x‹yq

to be contractible.

Theorem 7.88. There are model structures Catb,glob
8,d and Catb,uple

8,d on the category
of simplicial presheaves Psh∆p∆ˆd ˆ Γ q in which the fibrant objects are precisely
the symmetric monoidal d-fold complete Segal spaces and the symmetric monoidal
d-uple complete Segal spaces, respectively. Both these model structures are defined
by means of the corresponding left Bousfield localizations.

Proposition 7.89. Any symmetric monoidal p8, dq-category induces a symmetric
monoidal category, if we pass to the corresponding homotopy 1-category.

Proof Sketch. For simplicity let d “ 1. Fix a symmetric monoidal 8-category
C P Catb

p8,1q
. By definition, we know that the induced morphism

Cx2y
»

ÝÑ Cx1y ˆ Cx1y

is a weak equivalence. By Whitehead’s Theorem 5.28, since Cx2y and Cx1y ˆ

Cx1y are bifibrant in Catp8,1q, the weak equivalence pδ!1, δ
!
2q :“ pCδ1,Cδ2q has a

homotopy inverse m : Cx1y ˆ Cx1y Ñ Cx2y, so we may define a tensor 8-functor
as the composition

Cx1y ˆ Cx1y Cx2y

Cx1y

φ!

m

b

From the twist isomorphism

t : x2y Ñ x2y, 1, 2 ÞÑ 2, 1
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we obtain an isomorphism t! :“ Cptq : Cx2y Ñ Cx2y. This isomorphism induces a
map τ given by the composition

Cx1y ˆ Cx1y Cx2y Cx2y Cx1y ˆ Cx1y
m t! pδ!1,δ

!
2q

We then realize that if we pass to homotopy categories, the map τ precisely induces
the functor

h1C ˆ h1C Ñ h1C ˆ h1C, pc, c1q ÞÑ pc1, cq

which follows from pδ!1, δ
!
2q ˝ t! “ pδ!2, δ

!
1q. In particular, we have

b ˝ τ » pφ!mqpδ!1, δ
!
2qt!m

» φ!t!m

“ φ!m

“ b

and passing to the homotopy 1-category we obtain a natural isomorphism

b ˝ τ – b

where τ : h1Cx1y ˆ h1Cx1y Ñ h1Cx1y and b : h1Cx1y ˆ h1Cx1y Ñ h1Cx1y denote
the induced functors on homotopy categories. Analogously, the associator of the
tensor product may be given by picking a homotopy inverse of the morphism

Cx3y
»
Ñ Cx1y3

Write a : Cx1y3 Ñ Cx3y for such an homotopy inverse. We may then consider the
commutative diagram

Cx3y Cx2y Cx1y

Cx2y ˆ Cx1y Cx1y ˆ Cx1y

Cx1y3

pf !,g!q

φ!
ˆid

q!

pδ!1,δ
!
2q

φ!

mˆid

where q : x3y Ñ x2y, 1, 2, 3 ÞÑ 1, 2, 2 and the morphisms f : x3y Ñ x2y and g : x3y Ñ

x1y are given by 1, 2, 3 ÞÑ 1, 2, ‹ and 1, 2, 3 ÞÑ ‹, ‹, 1, respectively.

b : x3y Ñ x3y, 1, 2, 3 ÞÑ 2, 3, 1

Define

F :“ a ˝ ppδ!1, δ
!
2q ˆ idq : Cx2y ˆ Cx1y Ñ Cx3y

By construction

pf !, g!qF » id

By making use of the above commutative diagram we obtain a homotopy equiva-
lence

pδ!1, δ
!
2q ˝ q! ˝ F “ pφ! ˆ idq ˝ pf !, g!q ˝ F » φ! ˆ id

Again by construction

p´ b ´q b ´ “ φ! ˝m ˝ pφ! ˆ idq ˝ pmˆ idq
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and by what we have established before we obtain equivalences

p´ b ´q b ´ » φ! ˝m ˝ pδ!1, δ
!
2q ˝ q! ˝ F ˝ pmˆ idq

» φ! ˝ q! ˝ F ˝ pmˆ idq

“ φ! ˝ q! ˝ a ˝ ppδ!1, δ
!
2q ˆ idq ˝ pmˆ idq

» φ! ˝ q! ˝ a

Analogously, one shows ´ b p´ b ´q » φ! ˝ q! ˝ a and therefore we have established

p´ b ´q b ´ » ´ b p´ b ´q

Passing to the respective homotopy categories this yields the associator. We then
consider the unique morphism u : x‹y Ñ x1y. From this we obtain a morphism
u! :“ Cpuq : Cx‹y Ñ Cx1y. Since, by assumption, the homotopy categeory h1pCx‹yq

is the terminal category, the induced functor on homotopy categories simply picks
out an object 1 P h1pCx1yq In order to verify that this object behaves like a monoidal
unit, let ιi : x1y Ñ x2y be the unique morphism in Fin‹ which sends 1 to i P t1, 2u.
This induces morphisms ι!i :“ Cpιiq : Cx1y Ñ Cx2y and these may be identified
with

ι!1 : x ÞÑ px,1q, ι!2 : x ÞÑ p1, xq

Finally, the equalities φ ˝ ι1 “ 1x1y “ φ ˝ ι2 give rise to

φ! ˝m ˝ pδ!1, δ
!
2q ˝ ι!i » φ!ι!i “ idCx1y

where the LHS is either 1b´ or ´b1 depending on i P t1, 2u. Passing to homotopy
categories, we obtain natural isomorphisms

ρ : p´q b 1
–
Ñ id, λ : 1 b p´q

–
Ñ id

in the respective homotopy categories. For more details see [39]. □

Example 7.90. Let C be a strict symmetric monoidal category (by Maclane’s coher-
ence Theorem this is not really a restriction, see the Nlab page coherence theorem
for monoidal categories). For W :“ Cˆ the maximal subgroupoid of C, the pair
pC,Wq gives rise to a homotopical category which is saturated. Therefore, the
Rezk nerve

N8pC,Wq

is a complete Segal space. We claim that, by means of the symmetric monoidal
structure on C, this may be extended to a symmetric monoidal p8, 1q-category. In
fact, we shall define a functor

C : Γ op Ñ Psh∆p∆ˆdq

which will constitute a symmetric monoidal p8, 1q-category. To this end, we note
that Wm “ pCmqˆ. For an object xmy P Γ let

Cxmy :“ N8pCm,Wmq‚‚

Next up, let us see what C shall do to the multiplication map φ : x2y Ñ x1y, 1, 2 ÞÑ 1.
Of course, this should induce a map Cx2y Ñ Cx1y. Let us start by considering
Cx2y0‚: Its l-simplices are given by

N8pC ˆ C,W ˆ Wq0,l “ NpweppC ˆ Cqr0sql “ NpW ˆ Wql – NWl ˆ NWl

https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
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Thus an l-simplex in Cx2y0,‚ is a pair of two l-tuples of composable isomorphisms

C0 C1 . . . Cl

D0 D1 . . . Dl

PW PW PW

PW PW PW

We may then use the symmetric monoidal structure on C to map this pair of
l-tuples to

C0 bD0 C1 bD1 . . . Cl bDl
PW PW PW

More generally, an l-simplex in

Cx2yk‚ “ NpwepC ˆ Cqrksq‚

is a pair of diagrams

C0,0 C1,0 . . . Ck,0 D0,0 D1,0 . . . Dk,0

C0,1 C1,1 . . . Ck,1 D0,1 D1,1 . . . Dk,1

...
...

...
...

...
...

C0,l C1,l . . . Ck,l D0,l D1,l . . . Dk,l

WQ

WQ

WQ WQ

WQ

WQ

PW

PW

PW

PWWQ

WQ

WQ

WQ

WQ

WQ

PW

PW

which shall be sent to the diagram

C0,0 bD0,0 C1,0 bD1,0 . . . Ck,0 bDk,0

C0,1 bD0,1 C1,1 bD1,1 . . . Ck,1 bDk,1

...
...

...

C0,l bD0,1 C1,l bD1,1 . . . Ck,l bDk,l

WQ

WQ

WQ WQ

WQ

WQ

PW

PW

PW

More generally, a morphism xmy Ñ xm1y induces a map Cxmy Ñ Cxm1y in the fol-
lowing way: By Lemma 7.85 it is enough to define this assignment for permutations
and order preserving functions. We can interpret the p8, 1q-category Cxmy as a
space ofm-tuples of commutative grids, or commutative diagrams. Likewise, Cxm1y

is the space of m1-tuples of commutative grids. A permutation σ : xmy Ñ xmy in-
duces the map Cxmy Ñ Cxmy which takes an m-tuple of grids switches their
ordering according to σ and thus yields a permuted m-tuple of grids. For an order
preserving function f : xmy Ñ xm1y we obtain a morphism Cxmy Ñ Cxm1y which
takes an m-tuple of grids and maps it to the m1-tule of grids by looking at the
preimages f´1pjq for j P xmy. In fact, all the information of f´1p‹q is discarded,
and for any set f´1pjq “ ti1, . . . , isu one takes the tensor product over all the grids
numbered by ik (in the example above, we take the tensor product of the first grid
with the second one). All that is left to check is that Segal’s special Γ condition is
satisfied. However, this follows from

Cxmyk,‚ “ N8pCm,Wmqk,‚
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“ NpweppCmqrksqq‚

– NpwepCrksqmq‚

– NpwepCrksqqm‚

“ pCx1yk,‚qm

and from the definition of the maps Cδi (an m-tuple of grids is mapped to the i-th
grid). The above construction will be denoted by

N8
bC P Psh∆p∆ ˆ Γ q

Definition 7.91. Let C and D be symmetric monoidal p8, dq-categories.
‚ A symmetric monoidal 8-functor (or symmetric monoidal p8, dq-functor)

is a natural transformation C Ñ D.
‚ A symmetric monoidal 8-natural transformation is a homotopy h : C ˆ

j∆,1r1s Ñ D.

Remark 7.92. Let C,D P Catb

p8,1q
be fibrant, and let C

ζ
Ñ D be a symmetric

monoidal 8-functor. Then ζ determines morphisms on objects and 1-morphisms:

ζpr0s, x1yq : Cpr0s, x1yq Ñ Dpr0s, x1yq, ζpr1s, x1yq : Cpr1s, x1yq Ñ Dpr1s, x1yq

which we will also simply denote by ζ for simplicity. We then observe that commu-
tativity of the diagram

C0x1y ˆ C0x1y D0x1y ˆ D0x1y

C0x2y D0x2y

C0x1y D0x1y

C0δ1ˆC0δ2 Dδ1ˆDδ2

ζˆζ

ζ

Cφ Dφ

ζ

bC bD

yields compatibility of ζ with the tensor products in C and D, respectively. In other
words, ζpxq bD ζpyq » ζpx bC yq. Analogously, one verifies the other properties
a symmetric monoidal functor has (up to homotopy), which establishes that the
induced functor h1Cx1y Ñ h1Dx1y is a symmetric monoidal functor.

7.7. Smooth symmetric monoidal p8, dq-categories. The next notion we want
to include is that of smooth 8-categories. Very roughly speaking, a smooth p8, dq-
category is an 8-sheaf of p8, dq-categories. In other words, local information of
p8, dq-categories may be glued to yield a global p8, dq-category for all good covers.

Definition 7.93. The category of cartesian spaces, denoted Cart, has as objects sets
U for which there exists a natural number n P N such that U is an open subset of
Rn and U is (smoothly) diffeomorphic to Rn. Morphisms in Cart are just smooth
maps.

We may yet again define a map jCart as the composition

Cart PshpCartq Psh∆pCartq Psh∆p∆ˆd ˆ Γ ˆ Cartqよ

and again we just write j, if there is no danger of ambiguity. Moreover, we also
extend all the codomains of the maps jΓ , j∆A , j∆,k and so on to Psh∆p∆ˆd ˆ Γ ˆ
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Cartq. The category Cart may be turned into a site by equipping it with the
coverage of good open covers, i.e., open covers for which every finite intersection
is either empty or diffeomorphic to Rn for some n. In this setting we recall the
definition of the Čech nerve:

Definition 7.94. For U :“ tUiuiPI a good open cover of V in Cart, the Čech nerve
CU P Psh∆p∆ˆd ˆ Γ ˆ Cartq has as its m-simplices the presheaf

ž

ζ : m

jUζ

where ζ : m should mean that ζ runs over all those pm ` 1q-tuples pζ0, . . . , ζmq P

Im`1 for which

Uζ :“
m
č

i“0

Uζi ‰ H

We then define the inclusions

ιkζ0...ζm`1
: Upζ0,...,ζm`1q ãÑ U

pζ0,...,xζk,...ζm`1q

where the hat means omission. Now this yields the face maps for the Čech nerve
by means of the universal property of the coproduct:

š

m`1: ζ

jUpζ0,...,ζm`1q

š

m : ζ

jUpζ0,...,ζmq

jUpζ1
0,...,ζ

1
m`1q jU

pζ1
0,...,

xζ1
k,...,ζ

1
m`1q

D!dk

jιk
ζ1
0...ζ

1
m`1

Similarily, we define the degeneracy maps associated with the Čech nerve by:
š

ζ : m

jUpζ0,...,ζmq

š

ζ : m`1

jUζ0,...,ζm`1q

jUpζ1
0,...,ζ

1
mq jUpζ1

0,...,ζ
1
k´1,ζ

1
k,ζ

1
k,ζ

1
k`1,...,ζ

1
mq

D!sk

Furthermore, the inclusion maps Upζ0,...,ζmq ãÑ V induce a canonical map

CU jV
ξU

by means of
š

ζ : m

jUζ0,...,ζmq jV

jUpζ1
0,...,ζ

1
mq

jpUpζ1
0,...,ζ

1
mqãÑV q

Remark 7.95. More efficiently,

CU :“

pksP∆
ż

j∆prksq d
ž

i0,...,ik

jUpi0,...,ikq
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where j∆ is the composition

∆ sSet “ Psh∆p‹q Psh∆p∆ˆd ˆ Γ ˆ Cartqよ !‹

where ! : ∆ˆd ˆ Γ ˆ Cart Ñ ‹ is the canonical projection.

Definition 7.96. A smooth symmetric monoidal d-uple Segal space is an object
C P Psh∆p∆ˆd ˆ Γ ˆ Cartq such that

‚ C is a fibrant object with respect to the injective model structure on
Psh∆p∆ˆd ˆ Γ qinj.

‚ C is local with respect to all the maps in Definition 7.86 (where we take
the tensor product of each of these maps with the identity on all the other
factors of the full product ∆ˆd ˆ Γ ˆ Cart).

‚ C is local with respect to all the maps

jpn, xlyq ˆ CU jpn, xlyq ˆ jV
jpn,xlyqˆξU

for all n P ∆ˆd and for all xly P Γ .

Remark 7.97. The extra smoothness condition boils down to having weak equiva-
lences

RMappjpn, xly, V q,Cq » Cpn, xly, V q‚
»
Ñ RMappjpn, xlyq ˆ CU,Cq

However, since any simplicial presheaf may be written as a homotopy colimit (over
∆op) of its individual layers, we have

RMappjpn, xlyq ˆ CU,Cq » RMappjpn, xlyq ˆ hocolim
rnsP∆op

CUn,Cq

» holim
rnsP∆

RMappjpn, xlyq ˆ CUn,Cq

» holim
rnsP∆

ź

ζ : n

RMappjpn, xlyq ˆ jUζ ,Cq

» holim
nP∆,ζ : n

Cpn, xly, Uζq

In particular, holim
nP∆,ζ : n

Cpn, xly, Uζq is the homotopy limit of the diagram

ś

iPI

Cpn, xly, Uiq
ś

i0,i1PI

Cpn, xly, Upi0,i1qq
ś

i0,i1,i2PI

Cpn, xly, Upi0,i1,i2qq . . .

Certainly enough, there also exists the notion of a d-fold smooth symmetric monoidal
Segal space and so on. In particular, we have:

Theorem 7.98. There exist model structures C8Catb,uple
p8,dq

and C8Catb,glob
p8,dq

, which
both have the same underlying category Psh∆p∆ˆd ˆ Γ ˆ Cartq, such that their
corresponding fibrant objects are smooth symmetric monoidal d-uple and d-fold Segal
spaces, respectively. These model categories are obtained by means of the respective
left Bousfield localizations.

Definition 7.99. Fix a presheaf C : Cartop Ñ Cat.
‚ The smooth Rezk nerve of C is given by

NC8

pCq :“
”

U ÞÑ N8pCpUqq

ı

P Psh∆p∆ ˆ Cartq

‚ If the presheaf C is actually valued in (strict) symmetric monoidal cate-
gories, i.e., C : Cartop Ñ Catb, then the symmetric monoidal smooth Rezk
nerve of C is given by

NC8

b pCq :“
”

U ÞÑ N8
b ppCpUqq

ı

P Psh∆p∆ ˆ Γ ˆ Cartq
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where N8
b denotes the symmetric monoidal Rezk nerve as given in Exam-

ple 7.90.

Remark 7.100. For more details on the above constructions, the reader should
consult the 2022 version of [6].

Remark 7.101. Note that the above definition suggests a good notion for what a
smooth 1-category could be. Indeed, such an object should be a functor C : Cartop Ñ

Cat such that NC8

pCq satisfies the smoothness or descent condition with regards
to the site Cart.

Example 7.102. Consider a Lie group X. Any such Lie group gives rise to a model
for a smooth symmetric monoidal 8-groupoid X8 P Psh∆pΓ ˆ Cartq given by the
assignment

pxly, Uq ÞÑ C8pU,Xql P Set ãÑ sSet

In the same style as in the previous chapter we may define the following notions:

Definition 7.103. Let C and D be smooth symmetric monoidal p8, dq-categories.
‚ A smooth symmetric monoidal 8-functor (or smooth symmetric monoidal

p8, dq-functor) is a natural transformation C Ñ D.
‚ A smooth symmetric monoidal 8-natural transformation is a homotopy
h : C ˆ j∆,1r1s Ñ D.

7.8. Duals in p8, dq-Categories. This chapter is based on [17] and [24].

We shall now try to construct the morphisms in Psh∆p∆ˆd ˆ Γ ˆ Cartq at which
we further localize in order to imprint the concept of duals into the very fabric of
the mathematical objects that we defined as smooth symmetric monoidal p8, dq-
categories. To this end, we realize that if B is a bicategory, then it is natural to
interpret 1-morphisms as functors and 2-morphisms as natural transformations. In
that setting, one can talk about adjunctions in B in the following sense:

Definition 7.104. Given two composable 1-morphisms x f
Ñ y

g
Ñ x in a bicategory

B and a 2-morphism η : 1x Ñ g□f , we call η the unit of an adjunction, if there
exists ε : f□g Ñ 1y such that the triangle identities are satisfied:

f□pg□fq pg□fq□g

f□1x – f f – 1y□f 1x□g – g g – g□1y

1fη ε1g η1g 1gε

Example 7.105. Since a monoidal category C is the same as a bicategory BC with
only one object, a symmetric monoidal category is the same as a bicategory with one
object, where composition of 1-morphisms is symmetric. We note that an object
c P C has a dual c: if and only if c is right adjoint to c:, when both are viewed as
1-morphisms in BC.

Example 7.106. Let f : x Ñ y be an invertible 1-morphism in a bicategory B. Let
g denote its inverse, then we may choose isomorphisms

g□f – 1x, f□g – 1y

which form the unit and counit for an adjunction between f and g. In particular,
g is a right adjoint to f , and f is a left adjoint to g. Conversely, any pair of
adjoints f % g such that the unit and counit maps 1x Ñ g□f and f□g Ñ 1y are
isomorphisms exhibit g as an inverse to f , up to isomorphism.

From the previous example we deduce:
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Corollary 7.107. Let B be a bicategory in which every 2-morphism is invertible,
and let f be a 1-morphism in B. Then the following are equivalent:

‚ f is invertible.
‚ f admits a left adjoint.
‚ f admits a right adjoint.

We recall that any d-fold complete Segal space C gives rise to its associated
homotopy bicategory h2C.

Definition 7.108. Let d ą k ⩾ 2 and fix a smooth symmetric monoidal p8, dq-
category C and a smooth symmetric monoidal p8, kq-category D.

‚ D is said to admit adjoints for 1-morphisms, if its homotopy bicategory
h2D admits adjoints for all 1-morphisms in the sense of Definition 7.104.

‚ We say that C has adjoints for k-morphisms, if for every fixed U P Cart
and for all m P ∆t1,...,k´1u, the p8, d ´ k ` 1q-category Cpm, x1y, Uq has
adjoints for 1-morphisms.

‚ We say that C has duals for objects, if the symmetric monoidal 1-category
h1C has duals for objects.

Remark 7.109. The previous definition may seem incomplete in that we do not
consider homotopy coherent adjunctions, however, any adjunction in the homotopy
2-category can be lifted to a homotopy coherent adjunction by [37].

Remark 7.110. By globularity, we realize that the condition that a smooth symmet-
ric monoidal p8, dq-category C has adjoints for k-morphisms essentially boils down
to saying that the p8, d´kq-category D :“ Cp1t1,...,ku, x1y, Uq (where 1t1,...,ku : t1, . . . , ku Ñ

∆ is the functor j ÞÑ r1s) admits adjoints for all 1-morphisms in h2D.

Remark 7.111. The condition that an p8, dq-category C has adjoints depends on
d. We may always view C as an p8, d ` 1q-category EC, in which all pd ` 1q-
morphisms are invertible. Yet, EC will not have adjoints for d-morphisms unless
C is an 8-groupoid.

Corollary 7.112. Let C be a smooth symmetric monoidal p8, dq-category. If every
k-morphism in C is invertible, then C admits adjoints for k-morphisms.

Proof. Follows from Corollary 7.107. □

Remark 7.113. Let C be a symmetric monoidal p8, dq-category. We say that an
object c P C is invertible if there is another object c´1 P C such that the tensor
products cbc´1 and c´1bc are both isomorphic to the unit object 1 P C. A Picard
8-groupoid is a symmetric monoidal p8, 0q-category C such that every object of C
is invertible. By the previous corollary we see that a Picard 8-groupoid has duals
when regarded as an p8, nq-category for any n ⩾ 0.

Claim 7.114 ([24]). Let C be a symmetric monoidal p8, dq-category. Then there
exists another symmetric monoidal p8, dq-category Cfd and a symmetric monoidal
functor ι : Cfd Ñ C with the following properties:

‚ The symmetric monoidal p8, dq-category Cfd has duals.
‚ For any symmetric monoidal p8, dq-category D with duals and any sym-

metric monoidal functor ζ : D Ñ C, there exists a symmetric monoidal
functor ξ : D Ñ Cfd and an equivalence ζ » ιξ. Moreover, ξ is uniquely
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determined up to equivalence:

Cfd

C D

ι

ζ

ξ
»

Remark 7.115. Pointing out some subtleties is in order:
‚ Let C be a symmetric monoidal p8, dq-category, and assume we have two

pairs pCfd, ιq and p rCfd,rιq which satisfy the properties of the above claim.
By the respective properties we obtain the existence of maps:

Cfd

C rCfd

ι

rι

ξ

rξ

such that rιrξ » ι and ιξ » rι. Thus in particular,

ιξrξ » ι, rιrξξ » rι

so by uniqueness up to isomorphism, we obtain ξrξ » id and rξξ » id. In
summary, Cfd is uniquely determined up to equivalence.

‚ For a smooth symmetric monoidal p8, dq-category, the claim does not
change. We consider the same diagrams

Cfd

C D

ι

ζ

ξ
»

yet every p8, dq-category involved is now also smooth.
‚ In the case where C is a symmetric monoidal p8, 1q-category we may iden-

tify Cfd with the full subcategory of C spanned by the dualizable objects
in C. More generally, passing from a symmetric monoidal p8, dq-category
to its fully dualizable counterpart Cfd requires repeatedly discarding ob-
jects which do not admit duals and k-morphisms which do not admit left
and right adjoints.

Definition 7.116. Let C be a symmetric monoidal p8, dq-category. An object c P C

is called fully dualizable if it belongs to the essential image of the functor ι : Cfd Ñ

C.

The goal is now to encode having adjoints for k-morphisms and having duals for
objects into a new model category structure C8Catb,:

8,d in which fibrant objects are
precisely smooth symmetric monoidal p8, dq-categories with duals.

Remark 7.117. In particular, if we have such a model structure, then a trivial
fibration

ι : Cfd Ñ C
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in C8Catb,:
8,d gives rise to the lifting problem

H Cfd

D C

»

ζ

for any smooth symmetric monoidal p8, dq-category with duals D. The existsence
of the corresponding lift is assured, since the LHS is a cofibration and the RHS is a
trivial fibration, by assumption. In particular, such a lift is unique up to homotopy.
The existence of this lift is precisely the content of Claim 7.114 (with the sole
difference that the diagram actually strictly commutes).

Definition 7.118. The bicategory Adj is the bicategory freely generated by
‚ two objects x and y,
‚ two morphisms f : x Ñ y and g : y Ñ x,
‚ two 2-morphisms η : 1x Ñ g□f and ε : f□g Ñ 1y

satisfying the triangle relations:

f□pg□fq pg□fq□g

f□1x – f f – 1y□f 1x□g – g g – g□1y

1fη ε1g η1g 1gε

We call Adj the free walking adjunction.

Remark 7.119. Any 2-functor Adj Ñ B, for B a bicategory, uniquely determines
an adjunction in B.

We note that any bicategory B gives rise to a simplicially enriched category B∆,
which has as objects the set B0 and for x, y P B0 we have a simplicial mapping
object

B∆px, yq :“ NpBpx, yqq P sSet

which is just the standard nerve of the respective hom-category of B. In fact, this
determines a functor

p´q∆ : Bicat Ñ sSet-Cat

between the category of bicategories and the category of simplicially enriched cat-
egories. Taking this one step further, there is a canonical functor N∆ given by the
composition

sSet-Cat Cat∆
op

Pshp∆ˆ2q Psh∆p∆ˆ2q

The arrow to the outermost right in the above composition is just interpreting a
bisimplicial set as a bisimplicial space by identifying it as a constant bisimplicial
space in the new simplicial direction. The morphism Cat∆

op
Ñ Pshp∆ˆ2q takes an

object in Cat∆
op

to its levelwise nerve. Finally, the morphism sSet-Cat Ñ Catop

takes a simplicially enriched category C and views it as a simplicial object in Cat
as follows: A simplicially enriched category C gives rise to a functor rC : ∆op Ñ Cat
which assigns to rns P ∆ the category rCn which has the same objects as C and
morphisms from objects x to y are given by the set of n-simplices Cpx, yqn. In
other words, a simplicially enriched category is the same as a simplicial object
in Cat which is constant on objects. Summarizing all this, we get the following
definition:
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Definition 7.120. The double nerve is the functor

N2 : Bicat Ñ Psh∆p∆ˆ2q

given by taking the composition

Bicat sSet-Cat Psh∆p∆ˆ2q
N∆p´q∆

Having collected these notions, we can embed the walking adjunction into the
category of bisimplicial spaces:

Definition 7.121. Write subpfq, subpgq, subpηq, subpεq Ă Adj for the sub-bicategories
generated by tfu, tgu, tf, g, ηu and tf, g, εu, respectively. In particular, we let

‚ f :“ N2subpfq,
‚ g :“ N2subpgq,
‚ η :“ N2subpηq,
‚ ε :“ N2subpεq,
‚ Adj :“ N2Adj.

Definition 7.122. Let d ⩾ 2, 1 ⩽ k ⩽ d´1, and m P ∆t1,...,k´1u. Let p2 : ∆tk,...,du Ñ

∆ˆ2 denote the projection onto the first two factors of ∆tk,...,du. Consider the
functor

jm d p‹
2 : Psh∆p∆ˆ2q Ñ Psh∆p∆ˆdq

which takes an object X P Psh∆p∆ˆ2q to the mutisimplicial space
ž

jm

p‹
2X, ∆t1,...,k´1u ˆ ∆tk,...,du Q pl,kq ÞÑ

ž

Hompl,mq

Xp2pkq,‚ P sSet

Applying the functor jm d p‹
2 to all the bisimplicial spaces f, g, η, ε yields multi-

simplicial spaces

fm, gm, ηm, εm,Adjm
For d, k and m as above, we realize that the inclusion 2-functor subpfq ãÑ Adj

induces a morphism

fm Ñ Adjm
In particular, if Fbp‹q is the free symmetric monoidal category with duals on a
single object ‹, then we may interpret Fbp‹q as a functor Γ op Ñ Cat by

Fbp‹qpxlyq :“ Fbp‹ql

Taking nerves levelwise we obtain a presheaf on ∆ ˆ Γ , which we may promote to
a simplicial presheaf on ∆ˆΓ . Pulling this back once again, we obtain a simplicial
presheaf on ∆ˆdˆΓ , which we denote by Dualb. Consider the subobject : Ă Dualb
generated by the image of the object ‹ inside Dualb. The inclusion ‹ ãÑ Fbp‹q

induces a map

: Ñ Dualb

Definition 7.123. The model category C8Catb,:
8,d is given by the left Bousfield

localization of C8Catb,glob
8,d at the morphisms

jpxly, V q ˆ fm jpxly, V q ˆ Adjm

jpxly, V q ˆ : jpxly, V q ˆ Dualb

for all xly P Γ, V P Cart,m P ∆t1,...,k´1u. A fibrant object in C8Catb,:
8,d will be

referred to as a smooth symmetric monoidal p8, dq-category with duals.
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Proposition 7.124. Let C be a fibrant object in C8Cat:

8,d. Then for all pxly, V q P

Γ ˆ Cart, the p8, dq-category Cpxly, V q admits duals for all k-morphisms with 1 ⩽
k ă d. In particular, for all V P Cart, the symmetric monoidal p8, dq-category
CpV q admits duals for objects.

Proof Sketch. We shall only verify that C has duals for objects. The other part of
the proof may be found in [17] Proposition 2.3.13. First, since our model structure
is simplicial and the map : ãÑ Dualb is a trivial cofibration, the induced map on
simplcial mapping spaces MappDualb,Cq Ñ Mapp:,Cq is a trivial fibration. In
particular, this map is surjective on vertices. We then note that a map : Ñ C just
picks an object x P Cx1y. On the other hand, a map Dualb Ñ C picks out an
object x: together with unit and counit maps, which witness x: as the dual of x in
the respective homotopy categories. Hence, in total, the existence of a lift for the
diagram

H MappDualb,Cq

jx1y Mapp:,Cqx

»px,x:,η,εq

yields the claim. □

7.9. Smooth 8-Functor Categories. Our goal in this chapter is to define a
suitable notion of smooth symmetric monoidal p8, dq-functor categories. From Ex-
ample 4.50 we recall that the category of simplicial presheaves on a small category
C is always powered, tensored, and enriched over sSet. With these ingredients,
the injective model structure Psh∆pCqinj is a simplicial model category. The key to
finding the correct functor 8-categories is to find a good closed symmetric monoidal
structure on Psh∆p∆ˆd ˆΓ ˆ Cartq, and then hope that this will behave well with
the associated model structures, that is, we want that the corresponding internal
hom yields a right Quillen bifunctor.

Notation 7.125. We recall the following notation:
‚ Given X,Y P Psh∆pCq, for A a symmetric monoidal category, we denote

the simplicial enrichment by

MappX,Y q P sSet

‚ In the special case where A “ ∆ˆdˆΓ ˆCart, we endow Psh∆p∆ˆdˆΓ ˆ

Cartq with the symmetric monoidal structure induced by Day convolution,
analogously to how we did it in Example 4.56. For X,Y P Psh∆p∆ˆdˆΓˆ

Cartq we will denote the corresponding Day convolution tensor product
by

X b Y P Psh∆p∆ˆd ˆ Γ ˆ Cartq

The Day internal hom will be denoted by

Funb
pX,Y q P Psh∆p∆ˆd ˆ Γ ˆ Cartq

We note that this internal hom also has a neat formula:

Funb
pX,Y q “ HompX bよ, Y q

where よ : p∆ˆd ˆΓ ˆ Cartqop ˆ∆op Ñ Set is the Yoneda embedding and
Homp´,´q denotes the set-valued hom-functor of the category Psh∆p∆ˆdˆ

Γ ˆ Cartq.
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According to [16] the multiple injective model structure C8Catb,uple
p8,dq

is a sym-
metric monoidal model category (where the tensor product is Day convolution),
which allows for an easy way to define the appropriate homotopical internal hom
in the uple case of smooth symmetric monoidal p8, dq-categories:

Definition 7.126. Let d ⩾ 0 and fix arbitrary objects X,Y P C8Catb,uple
p8,dq

. The

homotopical internal hom in C8Catb,uple
p8,dq

from X to Y , is the derived internal hom:

Funb
uplepX,Y q :“ Funb

pX,RuplepY qq P C8Catb,uple
p8,dq

where Ruple denotes a fibrant replacement functor in C8Catb,uple
p8,dq

.

Unfortunately, the globular injective model structure C8Catb,glob
p8,dq

does not sat-
isfy the pushout product axiom, so we cannot compute homotopical internal homs
by computing the corresponding derived internal hom (the globularity condition it-
self is at fault here). The solution to the problem is to transfer the derived internal
hom of some other Quillen equivalent model category to our setting. For this, we
first have to introduce Rezk’s Θd-spaces, which form a cartesian model category:

7.9.1. Rezk’s Θd-spaces. The following short exposition is based on [32] and the
most recent version of [16].

A Θd-space is a simplicial presheaf on Joyal’s category Θd, that is, an object in
Psh∆pΘdq. The categories Θd for d P N will be explained first: We regard Θd as a
full subcategory of St-d-Cat of strict d-categories (recall that a strict d-category is
a category enriched over the category of strict pd´ 1q-categories, see also Example
4.23). The category Θ0 is the full subcategory of St-0-Cat “ Set consisting of the
terminal object. The category Θ1 is the full subcategory of St-1-Cat consisting of
the objects rns for n P N, where rns represents the free strict 1-category on the
diagram

0 1 . . . n´ 1 n

In particular, Θ1 “ ∆, the standard simplex category. The category Θ2 is the full
subcategory of St-2-Cat consisting of objects which are denoted rmsprn1s, . . . , rnmsq

for m,n1, . . . , nm P N. This represents the strict 2-category C which is "freely
generated" by the objects t0, 1, . . . ,mu, and morphism categories Cpi´1, iq “ rnsi.
For example, the strict 2-category r4spr5s, r1s, r3s, r0sq corresponds to the free 2-
category:

0 1 2 3 4

More generally, the objects of Θd are of the form rmspϑ1, . . . , ϑmq, where m P N
and ϑj are objects in Θd´1. This object then corresponds to the strict d-category C
freely generated by objects t0, . . . ,mu, and a strict pd ´ 1q-category of morphisms
Cpi ´ 1, iq “ ϑi. Morphisms of Θd are just functors between strict d-categories
(enriched functors between St-pd´ 1q-Cat-enriched categories.). Just like ∆ˆd, the
category Θd may be used to define the correct notion of globular p8, dq-categories.
In fact, one considers the injective model structure Psh∆pΘdqinj and then one per-
forms left Bousfield localization with respect to a class of morphisms which encodes
some form of Segal conditions as well as completeness conditions (for details see
[32]). The resulting model category will be denoted by Psh∆pΘdqloc and it is called
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the Rezk model structure on Θd-spaces. We then observe that there is a functor
f : ∆ˆd Ñ Θd given by the composition

∆ˆd ∆ˆpd´1q ˆ Θ1 ∆ˆpd´2q ˆ Θ2 . . . ∆ ˆ Θd´1 Θd
f1 f3 fd´1 fdf2

where

∆pd´i`1q ˆ Θi´1 ∆ˆpd´iq ˆ Θi

prm1s, . . . , rmd´i`1s, ϑq prm1s, . . . , rmd´is, rmd´i`1spϑ, . . . , ϑqq

fi

For more details on this see [5]. Taking left and right Kan extensions along f , yields
an adjunction

Psh∆p∆ˆdq Psh∆pΘdqf‹

f#

f‹

%
%

The adjunction f‹ % f‹ is then found to be a Quillen equivalence between the
globular model structure on d-fold Segal spaces (that is, Catglob

p8,dq
q and the Rezk

model structure on Θd-spaces (see [5] Corollary 7.3). From that point of view,
fibrant objects in Psh∆pΘdqloc describe the notion of globular p8, dq-categories just
as well as d-fold complete Segal spaces do. The advantage of the Rezk model
structure is however that it is a cartesian closed model structure, i.e., we have a
homotopical internal hom. The idea is to transfer this homtotopical internal hom
from Θd-spaces to d-fold Segal spaces by means of the Quillen equivalence f‹ % f‹.
We then note that we may extend the functor f to a functor rf : ∆ˆd ˆΓ ˆ Cart Ñ

Θd ˆΓ ˆ Cart by setting rf :“ f ˆ idΓ ˆ idCart. In particular, denote by rf# and rf‹

the corresponding left and right Kan extensions along rf . In the newest version of
[16], we find the following result:

Proposition 7.127. Let d ⩾ 0 and denote by Funb
Θp´,´q the internal hom in

Psh∆pΘdˆΓˆCartq with respect to the cartesian closed structure. Furthermore, let
Rinj : Psh∆p∆ˆdˆΓ ˆCartqinj Ñ Psh∆p∆ˆdˆΓ ˆCartqinj be a fibrant replacement
functor for the injective model structure. We may then consider the bifunctor

Psh∆p∆ˆd ˆ Γ ˆ Cartq ˆ Psh∆p∆ˆd ˆ Γ ˆ Cartq Ñ Psh∆p∆ˆd ˆ Γ ˆ Cartq

pY,Zq ÞÑ Rinj rf‹Funb
Θp rf‹Y, rf‹Zq

Then for all X,Y, Z P Psh∆p∆ˆd ˆ Γ ˆ Cartq with Z fibrant in the globular model
structure and X,Y fibrant in the injective model strcture, the object Rinj rf‹Funb

Θp rf‹Y, rf‹Zq

is also fibrant in C8Catb,glob
p8,dq

and, moreover, we have a weak equivalence of derived
mapping spaces

MappX b Y,Zq » MappX,Rinj rf‹Funb
Θp rf‹Y, rf‹Zqq

Proof. This will be Proposition 2.4.3 in the updated version of [16]. □

This motivates:

Definition 7.128. Let d ⩾ 0. For X,Y P C8Catb,glob
p8,dq

, the corresponding homo-
topical internal Hom is given by

Funglob
b pX,Y q :“ Rinj rf‹Funb

Θp rf‹RglobX, rf‹RglobY q

where Rinj, Rglob are fibrant replacement functors for the injective and globular
model structures, respectively.
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Remark 7.129. We note that Funglob
b is not the left or right derived functor of Funb,

but the above proposition assures us that this is yet still the correct notion to go
with.

7.10. Cores and Mapping objects of smooth p8, dq-Categories. Recall the
following:

Notation 7.130. Let R :“ L ˆ R{L be a product of two categories, and let X P

Psh∆pRq. For l P L, we are able to perform partial evaluation of X at l to obtain
a simplicial presheaf Xl P Psh∆pR{Lq.

Definition 7.131. Let M,L{M,R{L be symmetric monoidal categories and consider
the induced symmetric monoidal categories L :“ M ˆ L{M, R :“ L ˆ R{L and
R{M :“ L{MˆR{L. Endow both Psh∆pLq and Psh∆pRq with the Day convolution
closed monoidal structure (analogously to Example 4.56).

‚ The powering of Y P Psh∆pRq by X P Psh∆pLq is given by

MappX,Y q :“ rp‹X,Y sDay

where p : L ˆ R{L Ñ L is the canonical projection functor and r´,´sDay
is the Day convolution internal hom (see Proposition 4.53).

‚ For Y P Psh∆pRq and X P Psh∆pLq, the corresponding mapping object
from X to Y is given by

MapMpX,Y q :“

ż

mPM

MappXm,Y mq P Psh∆pR{Mq

Remark 7.132. Let us point out some subtleties:
‚ The above definition will be of particular interest to us whenever R (and

therefore also L) is a subfactor of ∆ˆd ˆ Γ ˆ Cart. If Psh∆pRq is en-
dowed with the multiple injective model structure obtained by localizing
the factors present in R (analogously to how we did it for C8Catb,uple

p8,dq
),

denoted Psh∆pRqmult-inj, then the functor p‹ is a left Quillen functor. In
particular, the powering

Mapp´,´q : Psh∆pLq
op
mult-inj ˆ Psh∆pRqmult-inj Ñ Psh∆pRqmult-inj

is a right Quillen bifunctor.
‚ If L “ R, then MappX,Y q “ rX,Y sDay is the Day internal Hom from X

to Y .
‚ For M “ ‹, we have

MapMpX,Y q “ MappX,Y q

Indeed, any wedge

pZ,φq

for the functor ‹op ˆ ‹ ÝÑ Psh∆pRq, p‹, ‹q ÞÑ MappX,Y q is trivial in the
sense that the wedge condition reads

MappX,Y q

Z MappX,Y q

MappX,Y q

φ

φ
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which gives no more information than saying that φ is a morphism from
Z to MappX,Y q in Psh∆pRq. The universal such morphism, and thus the
sought-for end, is then simply given by the identity wedge

´

MappX,Y q, id : MappX,Y q 9ÑMappX,Y q

¯

‚ For M “ L “ R, we have

MapMpX,Y q “ MappX,Y q

Indeed, we recall the adjunction

HompS dX,Y q – sSetpS,MappX,Y qq

for all S P sSet and X,Y P Psh∆pRq. Thus, we only need to verify that
MapMpX,Y q gives rise to the same adjunction data:

sSet
´

∆n,

ż

mPM

MappXm,Y mq

¯

–

ż

mPM

sSetp∆n,MappXm,Y mqq

–

ż

mPM

sSetp∆n dXm,Y mq

–

ż

mPM

ż

lP∆

Setp∆n
l d pXmql, pY mqlq

– Homp∆n dX,Y q

Since any simplicial set A P sSet is a colimit of representables, the above
adjunction already yields the full adjunction.

7.10.1. Cores. Recall that for a subset S Ă t1, . . . , du we wrote Sc :“ t1, . . . , duzS
for its corresponding complement.

Definition 7.133. For S Ă t1, . . . , du and m P ∆S a multisimplex, the functor

Psh∆p∆ˆdq Psh∆p∆Sc

q
evm

which takes a simplicial presheaf X on ∆ˆd to the partial evaluation Xm at m.
The functor evm is called the partial evaluation functor for the multisimplex m.

Recall the Nerve Realization paradigm 2.28. We then note that the partial
evaluation functor evm arises as a corresponding nerve functor. Indeed, let us
consider the functor

p´,´,mq1 : ∆Sc

ˆ ∆ Ñ ∆ˆd ˆ ∆

which takes a multisimplex pa, rlsq P ∆Sc

ˆ ∆ and maps it onto the multisimplex
pa, rls,mq1 P ∆ˆd ˆ ∆ – ∆t1,...,du ˆ ∆tr1u which is given by pa, rls,mq1|S ” m and
pa, rls,mq1|Sc ” a and pa, rls,mq1|

tr1u
” rls. We then consider the functor p´,´,mq

given by the composition

∆ˆd ˆ ∆ Psh∆p∆ˆdq

∆Sc

ˆ ∆

p´,´,mq
1

よ

p´,´,mq
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Lemma 7.134. The functor evm from the previous definition admits a left adjoint

Psh∆p∆Sc

q Psh∆p∆ˆdq

Lm

evm

%

which is given as the left Kan extension of p´,´,mq : ∆Sc

ˆ∆ Ñ Psh∆p∆ˆdq along
the Yoneda embedding:

∆Sc

ˆ ∆ Psh∆p∆ˆdq

Psh∆p∆Sc

q

p´,´,mq

Lm
よ

More explicitly, Lm takes Y P Psh∆p∆Sc

q and maps it onto

jm d Y : ∆ˆd Ñ sSet, ∆ˆd Q n ÞÑ
ž

∆SpnS ,mq

Y nSc

where nS P ∆S denotes the multisimplex obtained by throwing away all simplices
that are not indexed by an element of S and analogously for nSc .

Proof. Let us start by showing that the explicit formula jmdp´q for Lm yields a left
adjoint for evm. If Y is representable, that is, Y –よpk, rlsq for pk, rlsq P ∆ˆd ˆ∆,
then

HompLmY,Xq – Xpk,mql – HompY,Xpmqq

which already establishes the adjunction Lm % evm. That Lm is the corresponding
left Kan extension immediately follows from the fact that for X P Psh∆p∆ˆdq we
have

Np´,´,mqX :“ Hompp´,´,mq, Xq – Xpmq “ evmpXq

and hence we are in the typical nerve-realization paradigm 2.28. □

We note that in particular if m “ 0 P ∆S is the 0-multisimplex, then L0 is given
by viewing a simplicial presheaf Y P Psh∆p∆Sc

q as a simplicial presheaf on ∆ˆd

by letting it be constant on all those factors in ∆S . Hence any S Ă t1, . . . , du gives
rise to an adjunction

Psh∆p∆ˆd ˆ Γ ˆ Cartq Psh∆p∆Sc

ˆ Γ ˆ Cartq
LS

evS

%

where evS denotes partial evaluation at 0 P ∆S . We then have the following:

Lemma 7.135 ([17] Lemma 2.2.8). The adjunction LS % evS from above descends
to a Quillen adjunction at the level of the local injective model structures.

The preceding Lemma justifies the following definition:

Definition 7.136. The functor

Psh∆p∆ˆd ˆ Γ ˆ Cartq Psh∆pΓ ˆ Cartq
p´q

ˆ
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is given as the right derived functor of the evaluation at 0-functor evt1,...,du. More
concisely, p´qˆ “ Revt1,...,du:

C8Catb,glob
p8,dq

C8Grpb
8 HopC8Grpb

8q

HopC8Catb,glob
p8,dq

q

evt1,...,du

locpγDRevt1,...,duq“Revt1,...,du

Remark 7.137. Let C be a smooth symmetric monoidal p8, dq-category, i.e., a fi-
brant object in C8Catb,glob

p8,dq
. Then the smooth symmetric monoidal 8-groupoid

Cˆ is called the underlying smooth symmetric monoidal 8-groupoid of C. In par-
ticular, since C is fibrant and by using Ken Brown’s Lemma 5.17, we deduce that
Cˆ » evt1,...,duC “ Cp0q.
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8. Smooth Bordism Categories

Do not meddle in the affairs of
wizards, for they are subtle and
quick to anger.

J.R.R. Tolkien, The Fellowship of
the Ring

The following Chapter is based on the corresponding construction of Bordism
categories in [16].

In mathematics, the concept of bordism plays a crucial role in the study of manifolds
and their embeddings. In recent years, the theory of bordisms has been extended
to the setting of 8-categories, giving rise to the theory of bordism 8-categories.
In this chapter, we will focus on a particular class of bordism 8-categories, known
as smooth 8-bordism categories. Here, the term "smooth" refers to the smooth-
ness of the 8-categories involved, which are 8-sheaves of 8-categories. We will
begin by introducing the general notion of a geometric structure, which will serve
as a foundational concept for our study of smooth 8-bordism categories as it will
enable us to consider an onslaught of different flavors of bordism categories. We
will then carry on with the construction of two variants of smooth 8-bordism cat-
egories endowed with general geometric structures, as well as consider some low
dimensional examples. Finally, we will study the behaviour and general properties
of the mentioned bordim categories, as well as investigate their symmetric monoidal
structure.

8.1. Geometric Structures.

Definition 8.1. Let FEmbd be the category which has as objects submersions
p : M ↠ U with d-dimensional fibers (this means that p´1tuu is a d-dimensional
manifold for all u P U) and U an object in Cart. Morphisms are smooth bundle
maps

pf : M Ñ N, F : U Ñ V q

that restrict to embeddings fiberwise, i.e., we have a commuting square

M N

U V

f

F

p q

and the restriction fu : Mu Ñ NF puq, whereMu :“ p´1tuu and NF puq :“ q´1tF puqu,
is an open embedding. Moreover, this category may be looked at as a site by defining
covering families to be those collections of morphisms

Mi M

Ui U

ii

ji

such that the maps ii, ji are open embeddings and the collection tιipMiquiPI is an
open cover of M .
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Example 8.2. Consider the category Embd which has as objects smooth d-dimensional
manifolds and morphisms are smooth embeddings. We have an embedding (a fully
faithful functor)

Embd FEmbd

M M N

N R0 R0

f

f

which sends an object M to the canonical projection M ↠ R0, while an embedding
is mapped to the bundle map pf, idR0q.

Definition 8.3. A fiberwise d-dimensional geometric structure is a simplicial presheaf
on FEmbd.

Remark 8.4. A d-dimensional topological structure is an object in Psh∆pEmbdq.

Remark 8.5. There is a simplicial enrichment of the site FEmbd: The simplicially
enriched site FEmbd has the same objects as FEmbd. Given two objects M ↠ U
and N ↠ V , the corresponding Hom-object

FEmbdpM ↠ U,N ↠ V q

is the simplicial set whose n-simplices are pairs of smooth maps

pg : δn ˆM Ñ N, u : U Ñ V q

where δn :“ tt P Rn`1 |
ř

i ti “ 1u, such that for any t P δn the resulting map
gt :“ gpt,´q : M Ñ N along with the map u : U Ñ V form a morphism in FEmbd:

M N

U V

gt

u

In particular, a morphism f : rns Ñ rn1s in ∆ is mapped to the map

f‹ : FEmbdpM ↠ U,N ↠ V qn1 Ñ FEmbdpM ↠ U,N ↠ V qn

pg : δn
1

ˆM Ñ N, u : U Ñ V q ÞÑ pδn ˆM
|f |ˆidM

ÝÑ δn
1

ˆM
g

ÝÑ N, u : U Ñ V q

Covering families for the enriched site FEmbd are the same as for Fembd.

Definition 8.6. A fiberwise d-dimensional geometric structure with isotopies is a
simplicial presheaf on the enriched site FEmbd, that is, an sSet-enriched functor
FEmbop

d Ñ sSet.

Remark 8.7. There are two reasons for calling an object in the sSet-enriched functor
category Psh∆pFEmbdq a geometric structure with isotopies. The main reason is
that later we will see how any such object will induce a different variant of a smooth
bordism p8, dq-category which incorporates (higher) isotopies as higher morphisms.
Another reason is that any such enriched functor S yields morphisms of simplicial
sets

FEmbdpM ↠ U,N ↠ V q Ñ MappSpN ↠ V q,SpM ↠ Uqq
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Recall that an l-simplex in the source is a pair pg : δl ˆ M ↠ N, u : U Ñ V q. Here
g is essentially a δl-family of embeddings, that is, an isotopy. Our functor S then
takes pg, uq to a (higher) homotopy ∆l ˆ SpN ↠ V q Ñ SpM ↠ Uq.

We will motivate how the above definition really incorporates a notion of geo-
metric structure by considering examples:

Example 8.8. The trivial geometric structure is given by the terminal simplicial
presheaf S “ ‹.

Example 8.9. Let X be a smooth manifold. Then X may be interpreted as a geo-
metric structure via the sheaf which assigns

pM ↠ Uq ÞÑ C8pM,Xq

to all submersions M ↠ U . A morphism

M N

U V

f

F

p q

is mapped to the precomposition map

f‹ : C8pN,Xq Ñ C8pM,Xq

Example 8.10. Recall that a framing for a d-manifold M is a trivialization of the
tangent bundle of M . More concretely, consider the trivial vector bundle Rd :“
M ˆ Rd over M , then a framing is the data of an isomorphism TM – Rd:

TM Rd

M

–

More generally, if d ⩽ d1, then a d1-framing of a d-manifold M is a trivialization of
the stabilized tangent bundle TM ‘ Rd

1
´d, that is, an isomorphism

TM ‘ Rd
1
´d Rd

1

M

–

In order to encode the notion of a d-framing we consider the canonical projection
map pRd ˆ R0 ↠ R0q P FEmbd, apply the Yoneda embedding and view it as a
simplicial presheaf on FEmbd. Denote the resulting object by jpRd ˆ R0 ↠ R0q P

Psh∆pFEmbdq. We then note that any d-dimensional manifold may be viewed as
an object in FEmbd by looking at the canonical submersion with d-dimensional
fibers M ↠ R0. Evaluating the presheaf jpRd ↠ R0q at the manifold M ↠ R0

results in the set

FEmbdpM ↠ R0,Rd ↠ R0q

which is precisely given by the set of embeddings M Ñ Rd. Taking the tangent map
of any such embedding f : M Ñ Rd results in linear isomorphisms Txf : TxM Ñ

TxRd – Rd and therefore these collect into a bundle isomorphism TM
Tf
Ñ Rd,
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which is precisely the notion of a framing. For a d1-framing, with d ⩽ d1, we take
ĂM :“ M ˆ Rd1

´d and then consider the presheaf jpRd1

↠ R0q. Elements in the set
FEmbdpĂM ↠ R0,Rd ↠ R0q then give rise to d1-framings for M .

Example 8.11. More generally, ifM is a d-dimensional manifold and U is a cartesian
space, then we may consider the canonical submersion with d-dimensional fibers
given by the projection map M ˆ U ↠ U . Evaluating the representable simplicial
presheaf jpRd ˆ U ↠ Uq at M ˆ U ↠ U then corresponds to the set of fiberwise
embeddings

M ˆ U Rd ˆ U

U U

f

Hence for each u P U , we get an embedding fu : M Ñ Rd and hence for each u we
get a d-framing of M .

Example 8.12. Consider the presheaf

Riemf
d : FEmbop

d Ñ Set

of fiberwise Riemannian metrics. This presheaf sends an object M
p
↠ U to the set

of metrics on the fiberwise tangent bundle

T fppqM :“
ž

uPU

T pp´1tuuq

where T pp´1tuuq denotes the usual tangent bundle of the d-dimensional manifold
p´1tuu. This means that an element in the set Riemf

dppq is a U -family

tmuuuPU

of metrics mu on T pp´1tuuq. A morphism

M N

U V

f

F

p q

in FEmbd is sent to the function

pf, F q‹ : Riemf
dpN

q
↠ V q Ñ Riemf

dpM
p
↠ Uq

which takes a V -family of metrics m :“ tmvuvPV on the fiberwise tangent bundle
T fpqqN to the U -family of pullback metrics

pf, F q‹m “ tf‹mF puquuPU

where each member of this U -family is given by the formula

pf‹mF puqqxpv, wq :“ m
F puq

fpxq
pTxfpvq, Txfpwqq

for all x P p´1tuu and all v, w P Txpp´1tuuq, where m
F puq

fpxq
denotes the symmetric

bilinear form of the metric mF puq at the point fpxq P N . This is a well defined
metric on the fiberwise tangent bundle T fppqM , since f is a fiberwise embedding.
Analogously, one may define the presheaves

Lorentzfd : FEmbop
d Ñ Set, ΨRiemf

d : FEmbop
d Ñ Set
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of fiberwise Lorentzian manifolds and more generally fiberwise Pseudo-Riemannian
metrics.

Example 8.13. Let G be a Lie group. The notion of a G-structure with connection
may be encoded as a simplicial presheaf BGconn on FEmbd by considering the
8-sheafification (a fibrant replacement) of the simplicial presheaf

pM ↠ Uq ÞÑ NpΩ1
U pM ; gqq{{C8pM,Gqq

in Psh∆pFEmbdqČech. Here Ω1
U pM ; gq denotes the set of fiberwise Lie-algebra valued

1-forms, C8pM,Gq denotes the group of smooth functions M Ñ G and N is the
usual nerve functor which is applied to the action groupoid

Ω1
U pM ; gq{{C8pM,Gq P Cat

which has
‚ objects given by the set of fiberwise smooth g-valued 1-formsA P Ω1

U pM ; gq,
‚ morphisms g : A Ñ A1 are labeled by smooth functions g P C8pU,Gq such

that they relate source and target by a gauge transformation

A1 “ g´1Ag ` g´1dg

where g´1Ag denotes the pointwise adjoint action of G on g and g´1dg is
the pullback g‹pϑq of the Maurer-Cartan form ϑ P Ω1pG; gq (see the Nlab
Maurer-Cartan form).

‚ Composition is induced by the group multiplication of G, i.e., composi-
tion of morphisms g : A Ñ A1 and h : A1 Ñ A2 is given by the pointwise
mutiplication h ¨ g : A Ñ A2.

For more details see [16] Example 3.3 and [13].

Example 8.14. We may encode tangential structures (see the Nlab tangential struc-
ture) in general as simplicial presheaves on FEmbd. The corresponding construction
may be found in [16] 3.2.

Example 8.15. Consider the enriched Yoneda embeddingよ : FEmbd ãÑ Psh∆pFEmbdq.
Then any object pM ↠ Uq P FEmbd induces a d-dimensional geometric structure
with isotopies よpM ↠ Uq.

A good question to ask now is whether or not we can relate the categories
Psh∆pFEmbdq and Psh∆pFEmbdq in some way. In particular, since FEmbd and
FEmbd are sites, we may consider the model categories Psh∆pFEmbdqČech and
Psh∆pFEmbdqČech obtained by taking left Bousfield localizations of the correspond-
ing injective model structures at the Čech nerves (see Definition 6.40) and ask
whether there is a model categorical correspondence between these. To construct
such a thing, consider the enriched functor

FEmbd FEmbd

pM ↠ Uq pM ↠ Uq

ρ

(where Set is interpreted as an sSet-enriched category with Hom-objects being
given by interpreting the usual Hom-sets as simplicial sets) which is the identity on
objects, while we have a map of simplicial sets

FEmbdpM ↠ U,N ↠ V q Ñ FEmbdpM ↠ U,N ↠ V q

https://ncatlab.org/nlab/show/Maurer-Cartan+form
https://ncatlab.org/nlab/show/tangential+structure
https://ncatlab.org/nlab/show/tangential+structure
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An l-simplex on the LHS, which is just a bundle map

M N

U Vu

f

is mapped to the δl-family

M N

U Vu

gpt,´q

where g : δl ˆ M Ñ N is given by gpt,´q :“ f for all t P δl. Taking the left Kan
extension along ρ, denoted ρ! yields an enriched adjunction

Psh∆pFEmbdq Psh∆pFEmbdq

ρ!

ρ‹

%

where ρ‹ denotes precomposition with ρ (see Proposition 4.46). Explicitly, the
simplicially enriched left adjoint functor ρ! sends a representable presheaf jpM ↠
Uq to the representable simplicially enriched presheaf よpM ↠ Uq. We then have
the following:

Proposition 8.16. The adjunction

Psh∆pFEmbdqČech Psh∆pFEmbdqČech

ρ!

ρ‹

%

is a Quillen adjunction.

Proof. This is Proposition 3.4.11 in the updated version of [16]. □

Remark 8.17. All aforementioned geometric structures may be considered as geo-
metric structures with isotopies by applying ρ!.

Example 8.18. There is a more direct construction to have a geometric structure of,
say, Riemannian metrics with isotopies. Indeed, we define the simplicially enriched
presheaf

Riemf
d : FEmbop

d Ñ sSet

An object pM
p
↠ Uq P FEmbd is sent to the simplicial set Riemf

dppq which has as
its set of l-simplices δl-families of fiberwise Riemannian metrics, that is, elements
of the set

ź

tPδl

Riemf
dppq – Setpδl,Riemf

dppqq

where δl :“ tx P Rl`1 |
ř

i xi “ 1u. In particular, the respective face and degen-
eracy maps dk, sk are induced by precomposition with the maps |dk|, |sk| defined
analogously as in equation (1):

δl´1 δl Riemf
dppq

δl δl`1 Riemf
dppq

|dk|

|sk|
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The action on the simplicial set of morphisms

FEmbdpM
p
↠ U,N

q
↠ V q ÝÑ MappRiemf

dpqq,Riemf
dppqq

has components

FEmbdpM
p
↠ U,N

q
↠ V ql ÝÑ MappRiemf

dpqq,Riemf
dppqql

which in turn send an element pft, F qtPδl P FEmbdpM
p
↠ U,N

q
↠ V ql to the

morphism ∆l ˆ Riemf
dpqq Ñ Riemf

dppq which, on n-simplices, is given by

∆l
n ˆ Riemf

dpqqn Q ph, δl
pmtqt
ÝÑ Riemf

dpqqq

´

pf|h|ptq, F q‹mt

¯

tPδn
P Riemf

dppqn

Analogously, we can define the simplicially enriched presheaves

Lorentzfd : FEmbop
d Ñ Set, ΨRiemf

d : FEmbop
d Ñ Set

of fiberwise Lorentzian manifolds with isotopies and more generally fiberwise Pseudo-
Riemannian metrics with isotopies.

Example 8.19. We may also enrich Example 8.9. For a smooth manifold X denote
by C8p´,Xq the simplicially enriched geometric structure FEmbop

d Ñ sSet which
takes a submersion M ↠ U to the simplicial set

C8pM,Xq

for which l-simplices are smooth δl-families of smooth maps M Ñ X, that is, a
smooth map δl ˆM Ñ X. Face and degeneracy maps are given analogously to Cut.
The action of this simplicially enriched functor on morphisms

FEmbdpM
p
↠ U,N

q
↠ V q MappC8pN,Xq,C8pM,Xqq

maps an l-simplex pft, F qtPδl on the LHS to an l-simplex ∆lˆC8pN,Xq Ñ C8pM,Xq,
which in turn has components

∆l
r ˆ C8pN,Xqr C8pM,Xqr

ph, pαtqtPδr q pf‹
|h|ptqαtqtPδr

Remark 8.20. We do not necessarily need to use the model category of simpli-
cial sets sSetQuillen as the codomain of our given geometric structures. In fact,
a Quillen equivalent codomain would do just as nicely. One such choice is given
by the transferred model structure on smooth sets. Indeed, consider the category
of presheaves on SetCartop . This category of presheaves admits a model structure
which is transferred from the Quillen model structure on sSet by means of the right
adjoint

SetCartop sSet

F Fpδ‚q – SetCartop
pよ ˝ δ‚,Fq

Sing8

referred to as the smooth singular complex functor. Here the functor δ‚ : ∆ Ñ Cart
is the map rns ÞÑ δn (which does the obvious thing to morphisms), whileよ denotes
the Yoneda embedding Cart ãÑ SetCartop . The resulting model category, called the
model category of smooth sets, is denoted by C8Set “ SetCartop

transf . Weak equivalences
and fibrations in C8Set are those morphisms whose image under Sing8 are weak
equivalences and fibrations in the Quillen model structure on simplicial sets. This
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model structure exists and it is cartesian. Moreover, by Theorem 2.28 Sing8 has a
left adjoint |´|8, and the corresponding adjunction is actually a Quillen equivalence

C8Set sSetQuillen
Sing8

|´|8

Quillen

%

(this is Theorem 7.8 in [29]). Having all that, we may redefine the site FEmbd as
something which is not enriched in simplicial sets, but rather enriched in smooth
sets. The objects in FEmbd are the same as before. For objectsM

p
↠ U andN

q
↠ V ,

the corresponding Hom-smooth set is the smooth set which takes a cartesian space
L P Cart to the set of pairs of smooth maps pf : LˆM Ñ N,F : U Ñ V q such that
the resulting maps pfpt,´q, F q form morphisms in the usual category FEmbd for
all t P L. A d-dimensional geometric structure with isotopies may then equivalently
be defined as C8Set-enriched presheaves FEmbop

d Ñ C8Set. This definition will
be employed in the newer versions of the papers [16, 17] as it is more convenient
with regards to the given proofs in the papers.

We will now define very convenient subcategories of FEmbd and FEmbd, respec-
tively.

Definition 8.21. Let d ⩾ 0.
‚ The site FEmbCartd is the full subcategory of FEmbd for which each

object is isomorphic to some projection map Rd ˆ U ↠ U , with the
Grothendieck topology of good open covers (meaning open covers on total
spaces such that any finite intersection is empty or isomorphic to an object
of FEmbCartd).

‚ The simplicially enriched site FEmbCartd is the full enriched subcategory
of FEmbd for which each objects is isomorphic to some projection Rd ˆU
with the Grothendieck topology of good open covers.

‚ The model categories Psh∆pFEmbCartdqČech and Psh∆pFEmbCartdqČech
are given as the respective left bousfield localizations of the injective model
structrues at Čech covers.

We then have the following:

Proposition 8.22. Denote by q : FEmbCartd Ñ FEmbd and q : FEmbCartd Ñ FEmbd
the canonical inclusion functors. Then the induced restriction functors

q‹ : Psh∆pFEmbdqČech Ñ Psh∆pFEmbCartdqČech

q‹ : Psh∆pFEmbdqČech Ñ Psh∆pFEmbCartdqČech

are right Quillen equivalences.

Proof. This is Proposition 3.3.2 in [16]. □

Remark 8.23. The previous proposition tells us that it is just as fine to define
geometric structrues as simplicial presheaves on FEmbCartd and FEmbCartd, re-
spectively.

8.2. The Smooth d-uple Bordism Category. We start off this chapter by ex-
plaining the notion of a cut for a submersion p : M ↠ U . This will be generalized
to cut rms-tuples and cut m-grids, for m P ∆ˆd. A cut m-grid for a d-dimensional
manifold is precisely what one would expect: a grid of cuts of the given manifold
which partitions the manifold into several pieces and in that sense makes the core of
the cut-grid into a manifold with corners. This will then lead to a quite comfortable
definition of bordism 8-categories.
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Definition 8.24. A cut of an object M
p
↠ U in FEmbd is a triple pCă, C“, Cąq of

subsets of M such that there is a smooth map h : M Ñ R satisfying

h´1p´8, 0q “ Că, h´1t0u “ C“, h´1p0,8q “ Cą

Moreover, we demand that the fiberwise-regular values of the map ph, pq : M Ñ

RˆU form an open neighborhood of t0u ˆU in RˆU . By fiberwise-regular values
of ph, pq we mean the regular values of the maps ph, pq|p´1tuu for all u P U .

Example 8.25. A cut for the projection M ↠ R0 onto the 0-dimensional manifold
R0 (a singleton) may look like

where M is the genus 3-surface as depicted. The red dashed line depicts the cut
C“. For Cą and Că there is a choice to make depending on the function which
induces the cut triple. Că could either be the half of the surface with two holes,
or the half with only one hole and vice versa for Cą. If, on the other hand, M is a
1-dimensional manifold and U :“ p0, 1q – R in Cart, then a cut for the projection
M ˆ U ↠ U might look something like

So we get an p0, 1q-indexed family of cuts (points) for the manifold M and this
family of cuts varies smoothly. The condition that the fiberwise regular values form
an open neighborhood of t0u ˆ U asserts that the given cut C“ is a 1-dimensional
submanifold of M .

Notation 8.26. For a cut triple as above we shall use the notation

C⩽ :“ Că Y C“, C⩾ :“ Cą Y C“

This induces a partial order on the set of cuts with C ⩽ C 1 if and only if C⩽ Ă C 1
⩽.

Remark 8.27. The definition of a cut gives rise to a presheaf on FEmbd in the
following way: There is a functor Cut : FEmbop

d Ñ Set that maps an object M
p
↠ U
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to its set of cuts, and a morphism

M N

U V

f

F

p q

is mapped to the map

Cutpf, F q : Cutpqq Ñ Cutppq

which takes a cut for N
q
↠ V and maps it onto the triple

pf´1Că, f
´1C“, f

´1Cąq

This is well defined (that is, it defines a cut for M
p
↠ U). Indeed, if h : N Ñ R

witnesses pCă, C“, Cąq as a cut for N
q
↠ V , then we may consider h ˝ f : M Ñ R.

Certainly,

ph ˝ fq´1p´8, 0q “ f´1Că, ph ˝ fq´1t0u “ f´1C“, ph ˝ fq´1p0,8q “ f´1Cą

Since f is a fiberwise embedding, we again have that the fiberwise regular values
of h ˝ f form an open neighborhood of t0u ˆ U Ă R ˆ U .

Definition 8.28. Let d ⩾ 0 and rms P ∆. A cut rms-tuple C for pM
p
↠ Uq P FEmbd

is a collection of cuts

Cj “ pCăj , C“j , Cąjq

for M
p
↠ U indexed by the vertices j P rms such that

C0 ⩽ C1 ⩽ . . . ⩽ Cm

Example 8.29. For d “ 2, M a 4-genus surface and rms “ r2s, a cut rms-tuple for
M ˆ R0 ↠ R0 might look like

where the first dashed red line depicts C“0, while the second one shows C“1 and
the third one shows C“2. More generally, for U “ p0, 1q – R in Cart a cut (in this
case an area) for the projection M ˆ U ↠ U might look like
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Remark 8.30. Looking at the above definition more closely we realize:
‚ A cut rms-tuple C “ pCjqjPrms also satisfies

Cąm Ă . . . Ă Cą0

‚ We again obtain a functor Cut P Psh∆pFEmbdq that associates to an
object prms,M

p
↠ Uq the set of cut rms-tuples of p. To a morphism

this functor associates a map of sets that takes preimages of the cuts and
reindexes them according to the map of simplices. That is, a face map
removes a cut and a degeneracy map duplicates a cut.

Notation 8.31. For a cut rms-tuple as in the above definition, we write

Cpj,j1q :“ Cąj X Căj1 , Crj,j1s :“ C⩾j X C⩽j1

for j ⩽ j1 P rms.

Having this notion of cuts of objects in FEmbd, we shall start with a precursor
to the 8-bordism categories we are trying to build:

Definition 8.32. Let d ⩾ 0 and fix pm, xly, Uq P ∆ˆd ˆ Γ ˆ Cart. The category
Bpm, xly, Uq is given by the following data:

‚ An object of the category Bpm, xly, Uq is a bordism given by
– A d-dimensional smooth manifold M (possibly open).
– A d-tuple C “ pCiqdi“1 of cut rmis-tuples Ci for the projection M ˆ

U ↠ U .
– A chosen map P : M ˆU Ñ xly, which partitions the set of connected

components of M ˆU into l disjoint subsets and another subset cor-
responding to the basepoint ‹ (the slot P´1t‹u is referred to as the
trash bin).

Such an object must satisfy the transversality property :
– For every subset S Ă t1, . . . , du and for any map j : S Ñ N with
ji ⩽ mi for all i P S, there is a smooth map hj : M ˆ U Ñ RS such
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that for any i P S the map

πi ˝ hj : M ˆ U Ñ R

where πi : RS Ñ R is the projection onto the i-th factor, yields the
ji-th cut Ciji in the cut tuple Ci. In particular, the fiberwise-regular
values of phj , pq : M ˆ U Ñ RS ˆ U form an open neighborhood of
t0u ˆ U Ă RS ˆ U .

The collection of cut tuples C “ pCiq is then called a cut m-tuple. For
notational convenience, let

Crj,j1s :“
č

iPS

Crji,j1
is
, Cpj,j1q :“

č

iPS

Cpji,j1
iq

for all j, j1 : S Ñ N with ji ⩽ j1
i ⩽ mi for all i P S.

For j and j1 as before, we also set

corepM,C,P, j ⩽ j1q :“ Crj,j1szP
´1t‹u

and we require this set to be fiberwise compact for all choices of j, j1, that
is, for each u P U , the intersection

corepM,C,P, j ⩽ j1q X p´1tuu

is compact for all choices j, j1. We will omit P in the notation if there is
no danger for ambiguity. In the case where S “ t1, . . . , du and j ” 0 and
j1
i “ mi for all i, we set

CorepM,C,P q :“ Crj,j1szP
´1t‹u

and we call it the core of the bordism pM,C,P q.
‚ A morphism in the category Bpm, xly, Uq is a cut respecting embedding :

That is, a morphism from a bordism pM,C,P q into a bordism pĂM, rC, rP q

is given by a smooth map ψ : M ˆ U Ñ ĂM ˆ U covering the identity on
U (that is ψ “ ψ1 ˆ idU : M ˆ U Ñ ĂM ˆ U) such that for all u P U , the
restriction ψ : M ˆ tuu Ñ ĂM ˆ tuu is an embedding of smooth manifolds.
Moreover, ψ satisfies the following properties:

– For any j, j1 : t1, . . . , du Ñ N with ji ⩽ j1
i ⩽ mi for all i, there is an

open set Yj,j1 Ă MˆU containing the core CorepM,C,P, j ⩽ j1q such
that for any open subset Wj,j1 Ă Yj,j1 containing CorepM,C,P, j ⩽
j1q, the map ψ restricts to a fiberwise diffeomorphism

Wj,j1 Ñ ĂWj,j1

where ĂWj,j1 Ą corepĂM, rC, rP , j ⩽ j1q is open. Furthermore, we de-
mand that the restriction of ψ to Wj,j1 satisfies ψpCijq “ rCij for all
cuts in the grid, meaning that after restricting the cut tuples Cij and
rCij to Wj,j and ĂWj,j respectively, the map ψ maps the subsets in the
triple Cij to corresponding subsets in the triple rCij .

– ψ respects the partition maps P and rP by ensuring commutativity
of the diagram

M ˆ U

xly

ĂM ˆ U

ψ

rP

P
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Compostion of two such morphisms ψ : MˆU Ñ ĂMˆU and φ : ĂMˆU Ñ

M 1 ˆ U is given by pφ1 ˝ ψ1q ˆ idU : M ˆ U Ñ M 1 ˆ U .

Remark 8.33. Some remarks are in order:
‚ The transversality condition precisely ensures that the cut rmis-tuples Ci

intersect transversally with each other.
‚ The partition map P : M ˆ U Ñ xly is allowed to have some slots being

the empty set, that is, we allow P´1tku “ H for some k P xly.
‚ The trash bin corresponds to those connected components of the manifold

which are actually irrelevant for the bordism at hand.
‚ We may extend the above definition to obtain a functor

B : p∆ˆd ˆ Γ ˆ Cartqop Ñ Cat, pm, xly, Uq ÞÑ Bpm, xly, Uq

A coface map dk : rmi ´ 1s Ñ rmis in the i-th factor of ∆ˆd is mapped
to the face map which removes the k-th cut from a given cut rmis-tuple
(for the outer face maps this also shrinks the core appropriately). A code-
generacy map sk : rmi ` 1s Ñ rmis in the i-th factor of the product ∆ˆd

is sent to the degeneracy map that duplicates the k-th cut in a given cut
rmis-tuple. For Γ , a map xly Ñ xl1y is simply composed with the given
partition map P : M ˆU Ñ xly (this may possibly shrink the core). For a
smooth map ξ : V Ñ U (a morphism in Cart) we realize that the smooth
map rξ :“ idM ˆ ξ : M ˆ V Ñ M ˆ U defines a morphism

pM ˆ V ↠ V q
rξ

Ñ pM ˆ U ↠ Uq

in FEmbd. This morphism induces the functor

Bpm, xly, ξq : Bpm, xly, Uq Ñ Bpm, xly, V q

which takes an object pM,C,P q and maps it onto the bordism

pM, rξ´1C,M ˆ V
rξ

Ñ M ˆ U
P
Ñ xlyq

where
rξ´1C :“ prξ´1Ciqdi“1,

rξ´1Ci :“ prξ´1Că
i
ji ,

rξ´1C“
i
ji ,

rξ´1Cą
i
jiqjiPrmis

which is a cut m-tuple for M ˆ V ↠ V . A morphism pM,C,P q
ψ
Ñ

pĂM, rC, rP q is mapped to

pM, rξ´1C,P ˝ rξq
ψ1ˆidV

ÝÑ pĂM, rξ´1
rC, rP ˝ rξq

Example 8.34. For d “ 0, an object in Bpxly,R0q is really just a 0-dimensional
manifold (a disjoint union of points). Morphisms boil down to diffeomeorphisms of
such 0-manifolds (bijections of finite sets).

Example 8.35. Let d “ 2. Then an object in the category Bppr1s, r1sq, x1y,R0q is
given by a triple

pM,C “ pC1, C2q, P q

where M is a 2-dimensional manifold and C1, C2 are cut r1s-tuples for M – M ˆ

R0 ↠ R0. This could look like
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where the partition map P : M Ñ x1y has preimages P´1t1u “ M and P´1t‹u “ H.
The core of this bordism is the area pC1

ą0XC1
⩽1qXpC2

ą0XC2
⩽1q, i.e., the rectangular

shape that is determined by the above cuts (the colored region). A morphism
ψ : M Ñ N between two such bordisms might look like

where ψ restricts to a diffeomorphism on the shadowed neighborhoods of the re-
spective cores.

Definition 8.36. Let d ⩾ 0. The d-uple bordism category (with no geometric struc-
ture) is the object Bordp8,dq,uple in the (model) category (see Definition 7.98)

C8Catb,uple
p8,dq
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given by composition of the functor B with the nerve functor N:

p∆ˆd ˆ Γ ˆ Cartqop Cat

sSet sSet

B

Bordpd,8q,uple N

Remark 8.37. Note that we are not claiming that Bordp8,dq,uple is a fibrant object
in C8Catb,uple

p8,dq
. For the time being, we shall pretend Bordp8,dq,uple to be a smooth

multiple symmetric monoidal p8, dq-category. We will elaborate later why this is
justified.

Example 8.38. Let d “ 1. An object of Bordp8,1q (in this case uple is redundant)
is given by a vertex in Bordp8,1qpr0s, x1y,R0q (or more generally, replace R0 by
U P Cart). Such a vertex is given by a triple

pM,C,P q

where M is a 1-dimensional manifold and C is a cut (a point) for M ˆ R0 ↠ R0.
This could look like

A 1-morphism in Bordp8,1q,uple is given by a triple

pM,C “ pC1, C2q, P q

where M is a 1-dimensional manifold, and C1, C2 are cuts for the projection M ˆ

R0 Ñ R0:

Domain and codomain maps are given by the maps Bordp8,dq,uplepd1, x1y,R0q and
Bordp8,1qpd0, x1y,R0q, which we can depict by
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Example 8.39. Let d “ 2. An object of Bordp8,2q,uple is given by a vertex in
Bordp8,2q,upleppr0s, r0sq, x1y,R0q (or more generally, we could take U P Cart arbi-
trary instead of R0). This in turn is given by a triple

pM,C “ pC1, C2q, P q

where M is a 2-dimensional manifold and C1, C2 are cuts for M – M ˆ R0 ↠ R0

and could look like

from which we realize that such an object simply boils down to a point of the
manifold M (the core of the bordism) which is given by the intersection C1

“ XC2
“.

A general object (so if U P Cart is arbitrary) is therefore a U -indexed smooth
family of points in M . A 2-morphism in Bordp2,8q,uple is given by a vertex of
Bordp2,8q,upleppr1s, r1sq, x1y,R0q (again we can make this more general by letting U
be arbitrary) which might look like the top left (or right) torus with the pictured
cuts:
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The arrows pointing downwards to different images describe corresponding domain
and codomain maps of horizontal morphisms (red lines) and vertical morphisms
(blue lines). For example, looking at the left column, the first manipulation is ap-
plying the map Bordd,upleppr1s, d0q, x1y,R0q to our given bordism. This says that
the given 2-morphism has as its vertical codomain the 1-morphism as depicted in the
middle left. The second manipulation is given by applying Bordp8,dq,upleppd1, r0sq, x1y,R0q.
This yields the domain (a point of our manifold) of the given vertical 1-morphism.
Analogously for the right column.

Remark 8.40. The simplicial presheaf Bordp8,dq,uple satisfies Segal’s special ∆-
conditions: For notational convenience let us restrict to d “ 1. We then have
an induced pullback diagram

Bordp8,1qpra` bs, xly, Uq

P Bordp8,1qprbs, xly, Uq

Bordp8,1qpras, xly, Uq Bordp8,1qpr0s, xly, Uq

D!p

Bordp8,1qpp0,xly,Uq

Bordp8,1qppa,xly,Uq

Bordp8,1qpp0Ñ...Ña,xly,Uq

Bordp8,1qppaÑ...Ñb,xly,Uq

where

P :“ Bordp8,1qpras, xly, Uq ˆBordp8,1qpr0s,xly,Uq Bordp8,1qprbs, xly, Uq

is the corresponding pullback. The morphism p (obtained by means of the universal
property of P) is given by

p “ pp1, p2q
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where p1 :“ Bordp8,1qpp0Ñ...Ña, xly, Uq and p2 :“ Bordp8,1qppaÑ...Ñb, xly, Uq. Ex-
plicitly, the morphism p takes vertices

pM,C “ pC0, . . . , Ca`bq, P q

in Bordp8,1qpra` bs, xly, Uq to pairs of vertices
”

pM, pC0, . . . , Caq, P q, pM, pCa, . . . , Cbq, P q

ı

P P

1-simplices in Bordp8,1qpra` bs, x1y, Uq (cut-respecting embeddings)

pM,C,P q
ψ
Ñ pĂM, rC, rP q

are mapped to 1-simplices in P given by
”

pM, pC0, . . . , Caq, P q
ψ
Ñ pĂM, p rC0, . . . , Caq, P q, pM, pCa, . . . , Ca`bq, P q

ψ
Ñ pĂM, p rCa, . . . , rCa`bqq, P q

ı

For the remaining simplicial layers it is clear how p acts (the higher layers are just
composable chains of cut-respecting embeddings). A general vertex in the pullback
P is of the form

ppM,C,P q, pĂM, rC, rP qq P Bord1pras, xly, Uq ˆ Bord1prbs, xly, Uq

with the property that

Bord1ppa, xly, UqppM,C,P qq “ Bord1pp0, xly, UqpĂM, rC, rP q

which is equivalent to

pM,Ca, P q “ pĂM, rC0, rP q

Hence M “ ĂM,P “ rP and Ca “ ĂC0. In particular, the map p has an obvious
inverse: A vertex

ppM, pC0, . . . , Caq, P q, pM, pCa, . . . , Ca`bq, P qq

is mapped to

pM, pC0, . . . , Ca`bq, P q

which verifies, in particular, that p is a weak equivalence. This, however, is precisely
the Segal condition. For a “ b “ 1 and U “ R0, we get the following picture: A
vertex in Bordp8,1qpr2s, x1y,R0q is given by a picture like

Applying the map p and then using the composition operation given by Bordp8,1qpd1, x1y,R0q,
for d1 : r1s Ñ r2s, yields
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So composition of 1-morphisms in Bordp8,1q is just forgetting the middle cut.

8.3. Bordism Categories with Geometric Structures. In the previous Chap-
ter we have defined bordisms with no additional structure. We would like to en-
dow bordisms with geometric structure, that is, we want to imprint the struc-
ture of a simplicial presheaf S P Psh∆pFEmbdq into the very fabric of the bor-
disms we consider. In order to define a corresponding object in the category
Psh∆p∆ˆd ˆ Γ ˆ Cartq we again need a precursor:

Definition 8.41. Let d ⩾ 0 and let S P Psh∆pFEmbdq be a geometric structure. For
fixed pm, xly, Uq P ∆ˆd ˆ Γ ˆ Cart, the simplicial object BS

pm, xly, Uq in Cat is
given by the following data:

‚ The simplicial set of objects is given by

Ob :“
ž

pM,C,P q

SpM ˆ U ↠ Uq

where the coproduct ranges over all objects pM,C,P q in Definition 8.32
with M a d-dimensional manifold, C a cut m-tuple for the projection
M ˆ U ↠ U and P a partition M ˆ U Ñ xly of connected components.
In particular, pM,C,P q must satisfy the transversality condition.

‚ The simplicial set of morphisms is given by

Mor :“
ž

pM,C,P q
ψ
Ñp ĂM, rC, rP q

SpĂM ˆ U ↠ Uq

where the coproduct is taken over all the cut-respecting embeddings from
Definition 8.32.

‚ The target map cod : Mor Ñ Ob sends the component indexed by a cut-
respecting embedding ψ : pM,C,P q Ñ pĂM, rC, rP q to itself by identity:

codn : Morn Ñ Obn, pψ, s P SpĂM ˆ U ↠ Uqnq ÞÑ ppĂM, rC, rP q, sq

Next, since

pψ, idU q : pM ˆ U ↠ Uq Ñ pĂM ˆ U ↠ Uq
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constitutes a morphism in FEmbd, the arrow

Spψq :“ Spψ, idU q : SpĂM ˆ U ↠ Uq Ñ SpM ˆ U ↠ Uq

makes sense. The source map dom : Mor Ñ Ob pulls back the component
indexed by a cut-respecting embedding ψ : pM,C,P q Ñ pĂM, rC, rP q by the
morphism ψ via S:

domn : Morn Ñ Obn, pψ, s P SpĂM ˆ U ↠ Uqnq ÞÑ ppM,C,P q,Spψqpsqq

‚ Composition is induced by functoriality of S: For morphisms

m1 :“ ppM,C,P q
ψ
Ñ pĂM, rC, rP q, s P SpĂM ˆ U ↠ Uqnq

m2 :“ ppĂM, rC, rP q
φ
Ñ pM 1, C 1, P 1q, s1 P SpM 1 ˆ U ↠ Uqnq

in Morn such that domnpm2q “ codnpm1q, we set

m2 ˝m1 :“ ppM,C,P q
φ˝ψ
Ñ pM 1, C 1, P 1q, s1q

This is well defined, since

domnpm2 ˝m1q “ ppM,C,P q,Spφ ˝ ψqps1qq

“ ppM,C,P q,SpψqSpφqps1qq

“ ppM,C,P q,Spψqpsqq

“ domnpm1q

and codnpm2 ˝m1q “ ppM 1, C 1, P 1q, s1q “ codnpm2q.

Remark 8.42. Let us point out some subtleties:
‚ If S “ ‹ is the terminal functor (so we have no geometric structure), then

BS
pm, xly, Uq is just Bpm, xly, Uq but interpreted as a constant simplicial

object in Cat (recall Definition 8.32).
‚ We may extend the above definition to obtain a functor

BS : p∆ˆd ˆ Γ ˆ Cartqop Ñ Cat∆
op
, pm, xly, Uq ÞÑ BS

pm, xly, Uq

The coface map dk : rmi´1s Ñ rmis in the i-th factor of the product ∆ˆd

removes the k-th cut in the corresponding cut rmis-tuple in the indexing
triple pM,C,P q of the coproduct. Analogously, the codegeneracy map
sk : rmis Ñ rmi`1s duplicates the k-th cut in the corresponding cut rmis-
tuple in the indexing triple pM,C,P q of the coproduct. For Γ , a map
xly Ñ xl1y is simply composed with the corresponding partition map in an
indexing triple pM,C,P q in the coproduct. For a smooth map ξ : V Ñ U
in Cart an object in the n-th layer ppM,C,P q, s P SpM ˆ U ↠ Uqnq is
taken to

ppM, rξ´1C,P ˝ rξq, Sprξqpfq P SpM ˆ V ↠ V qnq

where we recall that rξ :“ idM ˆ ξ. A morphism

ppM,C,P q
ψ
Ñ pĂM, rC, rP q, s P SpĂM ˆ U ↠ Uqnq

in the n-th layer is taken to

ppM, rξ´1C,P ˝ rξq
ψ1ˆidV

ÝÑ pĂM, rξ´1
rC, rP ˝ rξq, Sprξqpsq P SpĂM ˆ V ↠ V qnq

Definition 8.43. Fix d ⩾ 0 and let S P Psh∆pFEmbdq be a geometric structure.
The d-uple bordism category with geometric structure S is the object BordS

p8,dq,uple
in the (model) category (see Definition 7.98)

C8Catb,uple
p8,dq



195

given by the following composition of functors:

p∆ˆd ˆ Γ ˆ Cartqop Cat∆
op

sSet Psh∆p∆q

BS

N

diag

BordS
p8,dq,uple

where diag : Psh∆p∆q Ñ sSet takes the diagonal of a bisimplicial set

Psh∆p∆q Q X ÞÑ pdiagpXq P sSet, rns ÞÑ Xn,nq

and N : Cat∆
op

Ñ Psh∆p∆q takes the (usual) nerve levelwise.

Remark 8.44. If we have no geometric structure, that is, if S “ ‹ is the terminal
simplicial presheaf on FEmbd, then BordS

p8,dq,uple “ Bordp8,dq,uple.

Example 8.45. Consider BordRiemf
1

p8,1q
(recall Example 8.12). Vertices in BordRiemf

1

p8,1q
pr1s, x1y, Uq

are given by

BordRiemf
1

p8,1q
pr1s, x1y, Uq0 “ diag ˝ NpBRiemf

1pr1s, x1y, Uqqpr0sq

“ NpBRiemf
1pr1s, x1y, Uq0q0

“ ObpBRiemf
1pr1s, x1y, Uq0q

“
ž

pM,C,P q

Riemf
1pM ˆ U ↠ Uq

For U “ R0, an element of Riemf
1pM ˆR0 ↠ R0q is precisely a Riemannian metric

m on M , and therefore a 1-morphism in BordRiemf
1

p8,1q
(where we disregard the U -

parameter by letting it be R0) is given by a quadruple

pM,C,P,mq

The Riemannian metric m then gives rise to an ordinary metric dm : MˆM Ñ R⩾0
on M given by

dmpa, bq :“ inf
a
γ
⇝b

1
ż

0

a

mp 9γ, 9γq dt

where γ is a path r0, 1s Ñ M with γp0q “ a and γp1q “ b. In particular, we have
bordisms with lengths. For example, a 1-morphism may be depicted by

where l denotes the length assigned to the core of the depicted bordism. Composi-
tion of such 1-morphisms is then depicted by
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which boils down to forgetting the middle cut and adding Riemannian lengths.

We note that the construction of BordS
p8,dq,uple seems a bit weird at first glance.

One reason for this is for example that for any triple pm, xly, Uq the partial eval-
uation BordS

p8,dq,uplepm, xly, Uq is not a Kan complex, which is one of the crucial
properties we have for a prospective p8, dq-category. The reason for this is that we
construct BordS

p8,dq,uple by means of the nerve of a category. We can amend that
however by passing to germs.

Definition 8.46. Let S P Psh∆pFEmbdq be a d-dimensional geometric structure
and consider a bordism pM,C,P q, as in Definition 8.32, along with the canonical
projection p : M ˆ U ↠ U .

‚ The S-germ associated to pM,C,P q is given by

SCpM ˆ U ↠ Uq :“ colim
VĄcorepM,C,P q

SpV ↠ ppV qq

where the colimit is taken over the poset of open subsets V Ă M ˆ U
containing the subset corepM,C,P q.

‚ By functoriality of S we can pull back along fiberwise cut-respecting em-
beddings ψ : M ˆU Ñ ĂM ˆU , where we restrict to neighborhoods of the
core. Indeed, by considering the diagrams

SpV q SCpM ˆ U ↠ Uq

Sp rV q SCpĂM ˆ U ↠ Uq

Spψq SCpψq

for V Ă M ˆ U and rV where ψ is interpreted to be its restriction to V ,
we obtain a map SCpψq.

‚ The simplicial object gBpm, xly, Uq in Grpd (the category of groupoids),
for pm, xly, Uq P ∆ˆd ˆ Γ ˆ Cart is given by the following data:

– The simplicial set of objects is given by

Ob :“
ž

pM,C,P q

SCpM ˆ U ↠ Uq

where the coproduct ranges over the objects in Definition 8.32.
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– The simplicial set of morphisms is given by

Mor :“
ž

gpψq

SCpĂM ˆ U ↠ Uq

where the coproduct is taken over all germs gpψq of fiberwise cut-
respecting embeddings ψ : M ˆ U ↠ ĂM ˆ U from Definition 8.32.
More in detail, two fiberwise cut respecting embeddings ψ,ψ1 : M ˆ

U ↠ ĂMˆU are identified if they agree on an open neighborhood V Ă

M ˆU , which contains the subset corepM,C,P q. The corresponding
equivalence class is then denoted by gpψq. Target and domain maps
for the individual simplicial layers, and the respective composition
operations are given analogously as in Definition 8.41.

– The above assignment collects into a functor

gB : p∆ˆd ˆ Γ ˆ Cartqop Ñ Grpd, pm, xly, Uq ÞÑ gBpm, xly, Uq

– The germy smooth p8, dq-bordism category gBordS
p8,dq,uple is given by

the composition of functors

p∆ˆd ˆ Γ ˆ Cartqop Grpd∆op

sSet Psh∆p∆q

gBS

N

diag

gBordS
p8,dq,uple

similar to Definition 8.43.

It turns out that gBordS
p8,dq,uple and BordS

p8,dq,uple are equivalent in the proper
sense. Indeed, consider the germification map

germ : BordS
p8,dq,uple Ñ gBordS

p8,dq,uple

which sends a bordism to the S-germ of its core. More precisely, for pm, xly, Uq P

∆ˆd ˆ Γ ˆ Cart, the map of simplicial sets germpm, xly, Uq is given by applying
diag ˝ N to the functor

BS
pm, xly, Uq Ñ gBS

pm, xly, Uq

which maps objects (in some simplicial layer)
´

pM,C,P q, s P SpM ˆ U ↠ Uq

¯

ÞÑ

´

pM,C,P q, gpsq P SCpM ˆ U ↠ Uq

¯

where gpsq is given by the image of s under the canonical map SpM ˆ U ↠ Uq Ñ

SCpM ˆ U ↠ Uq. For morphisms we have the assignment

ppM,C,P q
ψ
Ñ pĂM, rC, rP q, s P SpĂM ˆ U ↠ Uqq ÞÑ pgpψq, gpsqq

sending both ψ and the geometric structure s to its corresponding equivalence
classes. With these definitions we have the following result:

Proposition 8.47. The germification map

germ : BordS
p8,dq,uple Ñ gBordS

p8,dq,uple

defines an objectwise weak equivalence, that is, the maps

germpm, xly, Uq : BordS
p8,dq,uplepm, xly, Uq Ñ gBordS

p8,dq,uplepm, xly, Uq

are weak equivalences of simplicial sets.

Proof. This is Proposition 4.2.4 in the updated version of [16]. □
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Remark 8.48. The previous proposition verifies that both variants of bordism cate-
gories are equivalent, so that we can choose each of these for practical applications.
However, it is very much clear that not having to care for germs all the time is
much more comfortable.

Remark 8.49. The previous Proposition also makes clear that the crucial informa-
tion of a bordism in BordS

p8,dq,uple is fully contained in the core of the bordism and
a germ of the geometric structure S around the core. For pM,C,P q a vertex in
BordS

p8,dq,uplepm, xly, Uq, we will call M ˆU the ambient manifold of our bordism,
while corepM,C,P q is the information we really need. It seems as if the ambient
manifold is entirely redundant here. This is not the case, as it provides quite a
useful way to think about composition of bordisms with geometric structure, as we
will explore later.

8.4. Bordisms with Isotopies. The reader familiar with the paper [24] might
remember that higher morphisms in the corresponding bordism category defined
there were isotopies (higher isotopies) between diffeomorphisms. We have another
variant of the bordism category which incorporates isotopies between cuts and is
therefore somewhat more reminiscient to [24]. This variant turns out to be the more
important one. This requires further preliminary definitions and another precursor.

Definition 8.50. Let l P N.
‚ The extended l-simplex is the set

δl :“ tt P Rl`1 |
ÿ

i

ti “ 1u

The compact part of δl will be denoted by δlc and it is given by

δlc :“ |∆l| “ tt P Rl`1
⩾0 |

ÿ

i

ti “ 1u

‚ A δl-family of cuts of an object M
p
↠ U in FEmbd is a collection of cuts

C :“ tpCă, C“, Cąqt | t P δlu

with the property that there exists a smooth map h : δl ˆ M Ñ R such
that for all t P δl, the map ht :“ hpt,´q : M Ñ R gives rise to the
cut pCă, C“, Cąqt as in Definition 8.24. We identify two such δl-indexed
collections if they have the same germ around the compact part of δlc, i.e.,
if C and rC are two δl-families of cuts, then C „ rC if there exists an open
neighborhood U Ă δl of δlc such that

h|UˆM “ rh|UˆM

where h and rh are the corresponding smooth maps δl ˆ M Ñ R which
realize the δl-families of cut tuples C and rC.

‚ We then also have an evident notion of δl-families of cut rms-tuples: A
δl-family of cut rms-tuples is a collection

C :“ tCt :“ pCăpj,tq, C“pj,tq, Cąpj,tqqjPrms | t P δlu

of cut rms-tuples Ct such that for each j P rms there exists a smooth
function hj : δ

l ˆ M Ñ R so that hpj,tq :“ hjpt,´q : M Ñ R gives rise to
the j-th cut in the cut-tuple Ct (as in Definition 8.24).

Remark 8.51. Some remarks are in order here:
‚ We have an ordering of δl-families of cuts, given by C ⩽ C 1 if and only if
C⩽,t Ă C 1

⩽,t for all t in some neighborhood of δlc Ă δl.
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‚ The above definition gives rise to a simplicially enriched functor

Cut : ∆op ˆ FEmbop
d Ñ sSet

which maps a pair prms,M
p
↠ Uq to the simplicial set whose l-simplices are

given by δl-families of cut rms-tuples on M
p
↠ U . The face and degeneracy

maps of the simplicial set Cutprms,M ↠ Uq take the j-th entry of some
l-simplex given by a smooth map hj : δl ˆM Ñ R to the compositions

δl´1 ˆM δl ˆM R

δl`1 ˆM δl ˆM R

|dk|ˆidM hj

|sk|ˆidM hj

where |sk| and |dk| are defined via (1). The simplicial structure map

∆prns, rmsq ˆ FEmbdpM
p
↠ U,N

q
↠ V q Ñ MappCutprms, qq,Cutprns, pqq

takes l-simplices on the LHS, say, the pair pω, pft, F qtPδlq, where ω is either
a coface map da : rns Ñ rn` 1s or a codegeneracy map sa : rn` 1s Ñ rns,
into the simplicial set whose k-simplices are given by homotopies

∆k ˆ Cutprms, qq Ñ Cutprns, pq

Our associated induced map then has components

∆k
r ˆ Cutprms, qqr Ñ Cutprns, pqr

pg, pCtqtPδr q ÞÑ pω‹f´1
|g|ptqpCtqqtPδr

where w‹, depending on whether ω “ da or ω “ sa, either removes the all
the a-th cuts in the corresponding δr-family of cut tuples, or dublicates it.

‚ We may extend the above simplicially enriched functor Cut to also include
cuts in different simplicial directions: Interpret a subset A Ă t1, . . . , du as
a discrete category. We define the functor

CutA⋔ : p∆opqA ˆ FEmbop
d Ñ sSet

which takes a pair pm,M ↠ Uq to the simplicial set whose l-simplices are
the subset of the product

CutA⋔pm,M ↠ Uql Ă
ź

aPA

Cutprmas,M ↠ Uql

consisting of those δl-families of cut tuples that satisfy the transversal-
ity condition as given in Definition 8.32. Face and degeneracy maps are
analogous to what we defined before, and what CutA⋔ does to morphisms
from p∆opqA and FEmbd is also in the same spirit as for Cut. More pre-
cisely, CutA⋔ is a subfunctor of the product of functors

ś

aPA

Cut : p∆opqA ˆ

FEmbop
d Ñ sSet. For A “ t1, . . . , du being the whole set, we shall write

Cut⋔ :“ Cut
t1,...,du

⋔

whenever the dependency on the dimension d is evident.

Lemma 8.52. Let pm, xly, Uq P ∆ˆd ˆ Γ ˆ Cart and fix a d-dimensional manifold
M and a partition map P : M ˆ U Ñ xly. Let C be a δk-family of cut m-grids on
the projection p : M ˆ U ↠ U . Then for each u P U , the union

totpM,C,P qu :“
ď

tPδkc

corepM,C,P qt,u
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where

corepM,C,P qt,u :“ p´1tuu X corepM,Ct, P q

is compact.

Proof. This is Lemma 4.3.3 in [16]. □

Based on the previous Lemma we have the following:

Definition 8.53. Let M,C and P be as in the above Lemma. We call totpM,C,P qu

the total core of the δk-family of cut m-grids at u. The union

totpM,C,P q :“
ď

uPU

totpM,C,P qu

is called the total core of C.

With that out of the way, we define a precursor to our bordism categories with
isotopies:

Definition 8.54. Let d ⩾ 0. For fixed pm, xly, Uq P ∆ˆd ˆ Γ ˆ Cart, the simplicial
object Bpm, xly, Uq in Cat is given by the following data:

‚ The simplicial set of objects, whose vertices are called bordisms, is given
by

Ob :“
ž

pM,P q

Cut⋔pm,M ˆ U ↠ Uq

where the simplicial set Cut⋔ was defined in Remark 8.51 and the coprod-
uct ranges over all pairs pM,P q as given in Definition 8.32.

‚ In order to define the simplicial set of morphisms let us first define the
following simplicial subset: For a pair pM,P q, pĂM, rP q as in Definition 8.32,
we define a simplicial subset

MCutppM,P q, pĂM, rP qq

of

FEmbdpM ˆ U ↠ U, ĂM ˆ U ↠ Uq ˆ Cut⋔pm,M ˆ U ↠ Uq ˆ Cut⋔pm, ĂM ˆ U ↠ Uq

where FEmbdpMˆU ↠ U, ĂMˆU ↠ Uq is the Hom-object of the simplicial
category FEmbd from Remark 8.5. An l-simplex of the simplicial subset
MCutppM,P q, pĂM, rP qq is a triple

pψ “ ψ1 ˆ idU : δl ˆM ˆ U Ñ ĂM ˆ U, C, rCq

We require that for all t P δl, the corresponding fiberwise embedding
ψt : MˆU Ñ ĂMˆU is, in particular, a fiberwise cut-respecting embedding
in the sense of Definition 8.32 with respect to the corresponding cut m-
grids Ct and rCt. In particular, we require that ψ is compatible with the
maps P and rP in the sense that the induced map on connected components

ψ‹ : π0pM ˆ Uq – π0pM ˆ U ˆ δlq Ñ π0pĂM ˆ Uq

satisfies rPψ‹ “ P . Having all that, the simplicial set of morphisms is
given by

Mor :“
ž

ppM,P q,p ĂM, rP qq

MCutppM,P q, pĂM, rP qq
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‚ The source map domn : Morn Ñ Obn in the n-th simplicial layer takes a
morphism pppM,P q, pĂM, rP qq, ψ, C, rCq and maps it onto ppM,P q, Cq. The
target map codn : Morn Ñ Obn in the n-th simplicial layer takes a mor-
phism pppM,P q, pĂM, rP qq, ψ, C, rCq to ppĂM, rP q, rCq.

‚ Composition of two morphisms m1 :“ pppM,P q, pĂM, rP qq, ψ, C, rCq and
m2 :“ pppĂM, rP q, pM 1, P 1qq, ψ1, rC,C 1q in the n-th simplicial layer may be
defined by setting

m2 ˝m1 :“ pppM,P q, pM 1, P 1qq,Ψ: δn ˆM ˆ U Ñ M 1 ˆ U,C,C 1q

where Ψ1
t :“ pψ11qt ˝ pψ1qt for all t P δn.

Remark 8.55. Yet again we may extend the above definition to obtain a functor

B : p∆ˆd ˆ Γ ˆ Cartqop Ñ Cat∆
op
, pm, xly, Uq ÞÑ Bpm, xly, Uq

With that in our toolkit we may finally give a precise definition of the bordism
categories with isotopies we are so interested in:

Definition 8.56. Fix d ⩾ 0. The d-uple bordism category with isotopies (without
geometric structure) is the object Bordd,uple in the (model) category (see Definition
7.98)

C8Catb,uple
p8,dq

given by the following composition of functors:

p∆ˆd ˆ Γ ˆ Cartqop Cat∆
op

sSet Psh∆p∆q

B

N

diag

Bordp8,dq,uple

Example 8.57. A vertex in Bordp8,dq,uplepm, xly, Uq is the same as a vertex in
Bordp8,dq,uplepm, xly, Uq, since δ0-families of cut-grids are just single cut-grids. n-
simplices in Bordp8,dq,uplepm, xly, Uq, on the other hand, are given by

Bordp8,dq,uplepm, xly, Uqn “ diag ˝ NpBpm, xly, Uqqn

“ NpBpm, xly, Uqnqn

In other words, such an n-simplex is given by n-many composable triplets

pψj : δ
n ˆMj´1 ˆ U Ñ Mj ˆ U, Cj´1, Cjq

n
j“1

where the ψj are δn-families of cut-respecting embeddings, while the Cj are δn-
families of cut m-grids.

Finally, it is time to add some more geometry to this flavor of a bordism category.
For this, let us again start off with yet again another precursor.

Definition 8.58. Let d ⩾ 0 and let S P Psh∆pFEmbdq be a simplicial presheaf on
the enriched site FEmbd. For fixed pm, xly, Uq P ∆ˆd ˆ Γ ˆ Cart, the simplicial
object BSpm, xly, Uq in Cat is given by the following data:

‚ The simplicial set of objects is given by

Ob :“
ž

pM,P q

Cut⋔pm,M ˆ U ↠ Uq ˆ SpM ˆ U ↠ Uq

where the coproduct ranges over the pairs pM,P q from Definition 8.32 and
Cut⋔ was defined in Remark 8.51.
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‚ The simplicial set of morphisms is given by

Mor :“
ž

ppM,P q,p ĂM, rP qq

MCutppM,P q, pĂM, rP qq ˆ SpĂM ˆ U ↠ Uq

where the coproduct ranges over pairs ppM,P q, pĂM, rP qq as given in Defi-
nition 8.32 and MCut was defined in Definition 8.54.

‚ The source map domn : Morn Ñ Obn in the n-th simplicial layer sends a
morphism

pppM,P q, pĂM, rP qq, ψ, C, rC, s P SpĂM ˆ U ↠ Uqnq

to

ppM,P q,Spψqpsq P SpM ˆ U ↠ Uqq

where Spψqpsq is provided by means of the enriched presheaf structure
maps

FEmbdpM ˆ U ↠ U, ĂM ˆ U ↠ Uq ˆ SpĂM ˆ U ↠ Uq ÝÑ SpM ˆ U ↠ Uq

The target map codn : Morn Ñ Obn in the n-th simplicial layer sends a
morphism

pppM,P q, pĂM, rP qq, ψ, C, rC, s P SpĂM ˆ U ↠ Uqnq

to

ppĂM, rP q, sq

‚ Composition of two composable morphisms

m1 :“ pppM,P q, pĂM, rP qq, ψ, C, rC, s P SpĂM ˆ U ↠ Uqnq

m2 :“ ppĂM, rP q, pM 1, P 1qq, ψ1, rC,C 1, s1 P SpM 1 ˆ U ↠ Uqnq

is given by

pppM,P q, pM 1, P 1qq,Ψ, C, C 1, s1q

where Ψ1
t :“ pψ11qt ˝ pψ1qt for all t P δn.

Remark 8.59. Again, the previous definition collects into a functor:

BS : p∆ˆd ˆ Γ ˆ Cartqop Ñ Cat∆
op
, pm, xly, Uq ÞÑ BSpm, xly, Uq

Definition 8.60. Fix d ⩾ 0 and S P Psh∆pFEmbdq. The d-uple bordism category
with isotopies and geometric structure S is the object BordSp8,dq,uple in the (model)
category (see Definition 7.98)

C8Catb,uple
p8,dq

given by the following composition of functors:

p∆ˆd ˆ Γ ˆ Cartqop Cat∆
op

sSet Psh∆p∆q

BS

N

diag

BordS
p8,dq,uple
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Example 8.61. Consider the 1-dimensional geometric structure with isotopies Riemf
1

from Example 8.18. The datum of a vertex in Bord
Riemf

1

p8,1q
pr1s, x1y,R0q is the same

as a vertex in BordRiemf
1

p8,1q
pr1s, x1y,R0q, that is, a triple pM,C,mq where M is a 1-

dimensional manifold, C is a cut r1s-tuple on M and m is a Riemannian metric on

M . On the other hand, a 1-simplex in Bord
Riemf

1

p8,1q
pr1s, x1y,R0q is given by a tuple

pψ : M ˆ δ1 Ñ ĂM, C, rC, pmtqtPδ1q

where ψ is a δ1-family of cut-respecting embeddings M Ñ ĂM with respect to two
δ1-families of cut r1s-tuples C and rC for M and N , respectively. Applying the face
maps d0 and d1 to the above tuple yields

pĂM, rCt“0, rmt“0q, pM, pψ‹
rCqt“1, ψ

‹
rmt“1q

One such 1-simplex could for example be given by

pψ, C, C, pmtqtPδ1 :“ pmqtPδ1q

where

ψ : M ˆ δ1 Ñ ĂM, ψpm, tq :“ m

and m is a metric on M , while C “ pCtqtPδ1 is the δ1-family of cut r1s-tuples given
by keeping the cut locus C“p0,t“0q fixed and moving the cut locus C“p1,t“0q to
C“p0,t“0q:

Remark 8.62. In the above example it might seem as if the explicit 1-simplex
pψ,C,C, pmqtPδ1q from the above example (or any more general 1-simplex) collapses
the data of the Riemannian length. However, this is not the case as the δ1-family
records the information of the entire family of Riemannian lenghts. This is best
showcased by referring to the Segal formalism:

‚ ‚

‚ ‚

r0,ls

id

id ↞

In the above, r0, ls denotes the manifold with Riemannian length, the arrow ↞
denotes the isotopy of points which moves the endpoint in r0, ls to the starting
point.

Example 8.63. Let us consider

Bord
よpRˆU↠Uq

p8,1q
pr0s, x1y, V q

An l-simplex in the above simplicial set is given by a composable l-tuple of mor-
phisms in the category BよpRdˆU↠Uqql:

pψj : δ
l ˆMj´1 ˆ V Ñ Mj ˆ V, Cj´1, Cj , pfj , Fjqqlj“1
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where the ψj are δl-families of cut-respecting embeddings, Mj Ă R are open sub-
manifolds, the Cj are δl-families of cuts, while

pfj , Fjq P FEmbdpMj ˆ V ↠ V,R ˆ U ↠ Uql

is a δl-family of fiberwise embeddings. In other words, fj : δl ˆ Mj ˆ V Ñ R ˆ U
and Fj : V Ñ U are smooth maps such that

Mj ˆ V R ˆ U

V U

fjpt,´q

Fj

represents a morphism in FEmb1 for all t P δl. So fjpt,´q embeds the fiber Mjˆtvu

into R ˆ tF pvqu.

Example 8.64. Consider the 0-dimensional bordism category Bord
C8

p´,Xq

p8,0q
endowed

with the geometric structure from Example 8.19. We note that, since d “ 0, vertices
in Bord

C8
p´,Xq

p8,0q
px1y, Uq are elements in the set

C8pM ˆ U,Xq0 –
ź

M

C8pU,Xq

where M is a 0-dimensional manifold (a disjoint union of points). An l-simplex in
BordC8

p´,Xq

p8,0q
px1y, Uq is given by an l-tuple

pψj : δ
l ˆMj´1 ˆ U Ñ Mj ˆ U, αqlj“1

where ψ is a diffeomorphism, while α : δl ˆN ˆ U Ñ X is a smooth map.

Remark 8.65. All cylinders in a fibrant replacement of BordSp8,dq are invertible. For
example, for d “ 1 consider an interval with source cut-tuple C0 :“ pCă0, C“0, Cą0q

and target cut-tuple C1 :“ pCă1, C“1, Cą1q. The source cut-tuple is induced by a
smooth map h : M Ñ R. Consider the additive inverse ´h : M Ñ R which results
in a new cut

D0 :“ pDă0 :“ Cą0, D“0 :“ C“0, Dą0 :“ Că0q

Now consider the isotopy i of points (an element of BordSp8,dqp0q1) which transports
the cut D“0 to the source cut C“0. All this results in a diagram

‚ ‚

‚ ‚

i

ps0q‚‹

ps0q‹‚

(where ps0q‚‹, ps0q‹‚ are the respective identities in the different simplicial direc-
tions) which may be viewed as a morphism of simplicial presheaves

ξ P Homp
ž

,BordSp8,dqq

where
š

does not denote the coproduct, but rather the glueing of corresponding
copies of ∆1

‚‹ and ∆1
‹‚. Now let R be some fibrant replacement functor, then we

have the lifting problem
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š

BordSp8,1q RBordSp8,1q

∆1
‚‹ ˆ ∆1

‹‚ ‹

PFib

rξ

PCof»
DI

which has a solution Iβ that may be depicted by

‚ ‚

‚ ‚

i

ps0q‚‹

ps0q‹‚

β

Iβ

The β thus obtained will be an inverse to the initial bordism α. Indeed, α itself
gives rise to a square

‚ ‚

‚ ‚

ps0q‚‹

ps0q‚‹

i

α

Iα

We can then glue these two squares to obtain

‚ ‚ ‚ ‚

‚ ‚ ‚ ‚

i

ps0q‚‹

ps0q‹‚

β

Iβ

α

i

ps0q‚‹

Iαps0q‹‚

ps0q‚‹

α

Jα

Considering the glueing of the two squares to the right we obtain αβ » id, while
considering the glueing of the two squares to the left results in βα » id.

8.5. Globular smooth Bordism Categories. We defined essentially two differ-
ent d-uple-bordism categories with geometric structures S denoted by BordS

p8,dq,uple

and BordSp8,dq,uple. From these two, we shall extract globular bordism categories
BordS

p8,dq,glob and BordSp8,dq,glob.

Definition 8.66. Let d ⩾ 0 and let S P Psh∆pFEmbdq or S P Psh∆pFEmbdq (de-
pending on the bordism category) be a geometric structure.

‚ The globular bordism category BordS
p8,dq,uple is defined as follows: Let

BordS
p8,dq,glob Ă BordS

p8,dq,uple

be the subobject whose value at pm, xly, Uq with m “ prm1s, . . . , rmdsq is
the diagonal of the nerve of the simplicial subobject BS

glob whose simplicial
set of objects is given by taking only those summands in Definition 8.41
that are indexed by triples pM,C,P q satisfying the following property:
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– If

pM,C,P q P Bordp8,dq,uplepprm1s, . . . , rmi´1s, r0s, rmi`1s, . . . , rmdsq, xly, Uq

for some 1 ⩽ i ⩽ d, then pM,C,P q lies in the same connected com-
ponent as a simplicial degeneration of an object in

Bordp8,dq,uplepprm1s, . . . , rmi´1s, r0s, . . . , r0sq, xly, Uq

in the simplicial directions i` 1, i` 2, . . . , d.
‚ The globular bordism category with isotopies BordSp8,dq,glob is defined as

follows: Let

BordSp8,dq,glob Ă BordSp8,dq,uple

be the subobject whose value at pm, xly, Uq with m “ prm1s, . . . , rmdsq is
the diagonal of the nerve of the simplicial subobject BS

glob whose simplicial
set of objects is given by taking only those summands in Definition 8.58
that are indexed by triples pM,P q satisfying the following property: If

pM,C,P q P Bordp8,dq,uplepprm1s, . . . , rmi´1s, r0s, rmi`1s, . . . , rmdsq, xly, Uq

where C is a δ0-family of cut m-tuples (that is, C is one cut m-grid) for
some 1 ⩽ i ⩽ d, then pM,C,P q lies in the same connected component as
a simplicial degeneration of an object in

Bordp8,dq,uplepprm1s, . . . , rmi´1s, r0s, . . . , r0sq, xly, Uq

in the simplicial directions i` 1, i` 2, . . . , d.

Example 8.67. Let d “ 2, then the following image depicts a cut tuple in the globu-
lar bordism category in bidegree pr1s, r1sq, that is, a vertex of Bordp8,2qppr1s, r1sq, x1y,R0q:

Remark 8.68. In general the objects

BordS
p8,dq, BordSp8,dq

(globular or mutliple) are not fibrant in the respective model category C8Catb

p8,dq

(this denotes either the multiple injective model structure or the globular one). This
is no problem however, since in the end we will be interested solely in derived Hom-
spaces. Since any object in C8Catb

p8,dq
is cofibrant, we do not need to (co)fibrantly

replace BordS
p8,dq or BordSp8,dq in the domain slot of our derived Homs.
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8.6. Functoriality of Bordism Categories. In the previous few pages we have
witnessed that there are assignments of objects

ObpPsh∆pFEmbdqq Ñ ObpC8Catb

p8,dq
q, S ÞÑ BordS

p8,dq

ObpPsh∆pFEmbdqq Ñ ObpC8Catb

p8,dq
q, S ÞÑ BordSp8,dq

where C8Catb

p8,dq
could stand both for the globular injective model structure and

the multiple injective model structure. It is readily observed that these maps extend
to yield a functor between the respective categories. For example, the functor

Bordp´q

p8,dq,uple : Psh∆pFEmbdq Ñ C8Catb,uple
p8,dq

does the obvious things to objects:

S ÞÑ BordS
p8,dq,uple

A morphism S Ñ T in Psh∆pFEmbdq is mapped to the morphism

BordS
p8,dq,uple Ñ BordT

p8,dq,uple

obtained from the induced maps
š

pM,C,P q

SpM ˆ U ↠ Uq
š

pM,C,P q

TpM ˆ U ↠ Uq

š

pM,C,P q
ψ
Ñp ĂM, rC, rP q

SpĂM ˆ U ↠ Uq
š

pM,C,P q
ψ
Ñp ĂM, rC, rP q

TpĂM ˆ U ↠ Uq

by applying diag ˝ N. We then have the following:

Proposition 8.69. Let d ⩾ 0. The functors

Bordp´q

p8,dq,uple : Psh∆pFEmbdqinj Ñ C8Catb,uple
p8,dq

, S ÞÑ BordS
p8,dq,uple

Bordp´q

p8,dq,glob : Psh∆pFEmbdqinj Ñ C8Catb,glob
p8,dq

, S ÞÑ BordS
p8,dq,glob

are left Quillen functors that preserve all weak equivalences. In particular, they are
homotopy continuous. Similarily, let Psh∆pFEmbdqinj denote the injective model
structure on enriched presheaves. The functors

Bord
p´q

p8,dq,uple : Psh∆pFEmbdqinj Ñ C8Catb,uple
p8,dq

, S ÞÑ BordSp8,dq,uple

Bord
p´q

p8,dq,glob : Psh∆pFEmbdqinj Ñ C8Catb,glob
p8,dq

, S ÞÑ BordSp8,dq,glob

are left Quillen functors that preserve all weak equivalences. In particular, they are
homotopy cocontinuous.

Proof. Let us simply write Bordp8,dq for both variants (globular and multiple). By
definition S ÞÑ BordS

p8,dq preserves monomorphisms and it maps weak equivalences
to weak equivalences. Of course this functor is a left adjoint: its right adjoint is
given by sending X P C8Catb

p8,dq
to the simplicial presheaf

pM ↠ Uq ÞÑ MappBordjpM↠Uq

p8,dq
, Xq

The same argument works for Bordp8,dq. □

More generally, the main result in [16] is the following:
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Theorem 8.70. The functors

Psh∆pFEmbdqČech Ñ C8Catb

p8,dq
, S ÞÑ BordS

p8,dq

Psh∆pFEmbdqČech Ñ C8Catb

p8,dq
, S ÞÑ BordSp8,dq

are left Quillen functors. In particular, they are p8, 1q-cosheaves, i.e., they preserve
homotopy colimits.

8.7. Symmetric Monoidal Structure of Smooth Bordism Categories. We
shall investigate the symmetric monoidal structure of gBordp8,dq,glob. The other
variants of bordism categories are analogous.

Proposition 8.71. The functor gBordp8,dq,glob satisfies Segal’s special Γ -condition.

Proof. Let C :“ gBordp8,dq,glob. We have to show that the induced morphism

Cxly Cx1yl
pδ!1,...,δ

!
lq

where δ!j :“ Cδj , is an objectwise weak equivalence. We first note that the single
morphism δ!i takes a bordism and forgets about all the information that is not
contained in the i-th slot P´1tiu. In other words, applying δ!i forgets about all
the other connected components except the i-th. The most natural candidate for a
homotopy inverse is then, unsurprisingly so, the l-fold disjoint union

l
ž

: Cx1yl Ñ Cxly, ppM1, C1, P1q, . . . , pMl, Cl, Plqq ÞÑ p

l
ž

i“1

Mi,
l

ž

i“1

Ci,
l

ž

i“1

Piq

where
š

Mi is the manifold obtained by taking the disjoint union over all Mi,
while

š

Ci is simply the cut-tuple obtained from the respective cut-functions for
each MiˆU by just taking their disjoint union. The map of connected components
š

Pi is then defined by means of
ž

Pi :
ž

Mi ˆ U Ñ xly, Mi ˆ U Q pmi, uq ÞÑ

#

i, if Pipmi, uq “ 1

‹, else

We then note that
šl actually yields a genuine inverse for pδ!1, . . . , δ

!
lq (recall that

we work in gBord, hence the Segal condition is verified. □

Remark 8.72. Of course the above Proposition is wrong if we talked about gBordS
p8,dq,

BordSp8,dq etc. for some non-trivial geometric structure. However, after passing to
some fibrant replacement of the corresponding bordism category everything works
out again.

We recall that the tensor 8-functor for a symmetric monoidal 8-category was
constructed by taking a weak inverse of the map pδ!1, δ

!
2q, so in our case

š

: Cx1y2 Ñ

Cx2y, and then by precomposing this weak inverse with φ!, where φ : x2y Ñ x1y, 1, 2 ÞÑ

1. By means of that, we obtain b:

Cx1y2 Cx2y

Cx1y

š

φ!

b

Since b is essentially taking the disjoint union itself with the difference that we
collect all connected components in the slot 1 P x1y (this is what postcomposing
š

with φ! does after all), we shall again write
š

“ b. For completeness, let us
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consider the remaining structure maps for symmetric monoidality. For this, let
us take the invesigate the variant Bordp8,1q, as this allows us to also talk about
duality information. We use the notation from the proof of Propostion 7.89. The
unit object for the monoidal structure is of course given by the empty set (in fact,
by any triplet pM,C,P q where P : M ˆ U Ñ x1y is a partition function mapping
everything to ‹). The left and right unitors are essentially identities

Bordp8,dqx1y Bordp8,dqx2y Bordp8,dqx1y ˆ Bordp8,dqx1y

Bordp8,dqx2y

Bordp8,dqx1y

ιi pδ!1,δ
!
2q

š

φ!

Analogously, the braiding is an identity:

Bordp8,dqx1y ˆ Bordp8,dqx1y Bordp8,dqx2y Bordp8,dqx2y

Bordp8,dqx1y ˆ Bordp8,dqx1y

Bordp8,dqx2y

Bordp8,dqx1y

š

t!

pδ!1,δ
!
2q

š

φ!

And similarily the associator is just an identity. Evaluation and coevaluation maps
for some point x may be given by:
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But then the triangle identities for the duality data are trivially satisfied up to
homotopy (isotopy):
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9. Smooth Functorial Field Theories

Circumstantial evidence is a very
tricky thing. It may seem to point
very straight to one thing, but if
you shift your own point of view a
little, you may find it pointing in
an equally uncompromising manner
to something entirely different.

Sherlock Holmes, The Boscombe
Valley Mystery

This chapter is based on the papers [24] and r17s, as well as on discussions with
Dmitri Pavlov.

9.1. The Topological Cobordism Hypothesis. Let us first delve into the for-
mulation of the cobordism hypothesis as given by Lurie in [24]. Lurie also con-
structed an p8, dq-category Bordp8,dq of bordisms. We will not review his con-
struction in detail, but we will give the following sketch from [24]:

Definition 9.1. Let d be a nonnegative integer. The globular p8, dq-category Bordp8,dq

is described informally as follows:
‚ The objects of Bordp8,dq are 0-manifolds.
‚ The 1-morphisms of Bordp8,dq are bordisms between 0-manifolds.
‚ The 2-morphisms of Bordp8,dq are bordisms between bordisms between
0-manifolds.

‚ The n-morphisms of Bordp8,dq are bordisms between bordisms between
. . . between bordisms between 0-manifolds (in other words, n-manifolds
with corners).

‚ The pd ` 1q-morphisms of Bordp8,dq are diffeomorphisms (which reducce
to the identity on the boundaries of the relevant manifolds).

‚ The pd` 2q-morphisms of Bordp8,dq are isotopies of diffeomorphisms.
‚ . . .

In particular, we may also consider the variants LBordfr
p8,dq and LBordor

p8,dq where
manifolds come equipped with d-framings and orientations, respectively.

Let C be a symmetric monoidal p8, dq-category. In Lurie’s setting a C-valued
d-dimensional (framed) topological quantum field theory is a symmetric monoidal
8-functor

F : Bordfr
p8,dq Ñ C

By means of the corresponding derived internal hom, we obtain a symmetric monoidal
p8, dq-category of topological quantum field theories, denoted by

Funb
pBordfr

p8,dq,Cq

The statement of the most prominent variant of the topological cobordism hypothesis
is then the following:

Theorem 9.2 ([24]). Let C be a symmetric monoidal p8, dq-category with duals.
Then the evaluation functor F ÞÑ Fpptq induces an equivalence

Funb
pBordfr

p8,dq,Cq Ñ Cˆ

where p´qˆ : Catb,:
8,d Ñ Grpdb

8 is the functor which extracts the maximal 8-subgroupoid
(see 7.136). In particular, Funb

pBordfr
p8,dq,Cq is an p8, 0q-category.
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Remark 9.3. It is no restriction to assume that C has duals in the above theorem.
In fact, for any symmetric monoidal p8, dq-category C, the canonical map

Funb
pBordfr

p8,dq,C
fdq Ñ Funb

pBordfr
p8,dq,Cq

is an equvialence of p8, dq-categories. Combining this observation with the above
Theorem yields

Funb
pBordfr

p8,dq,Cq » pCfdqˆ

Remark 9.4. The topological cobordism hypothesis can be restated by saying that
the p8, dq-category Bordfr

p8,dq is the free symmetric monoidal p8, dq-category with
duals generated from a single object.

9.2. Geometric Field Theories. The goal of this section is to both generalize
and make precise what we did in the previous motivational chapter. In the following
we shall simply write BordSp8,dq instead of BordSp8,dq,glob. In light of the definition
of topological quantum field theories, the following seems most natural:

Definition 9.5. Let C be a smooth symmetric monoidal p8, dq-category and let
S be a d-dimensional geometric structure with isotopies. A d-dimensional smooth
C-valued functorial field theory with geometry S is a smooth symmetric monoidal
8-functor F : BordSp8,dq Ñ C.

Example 9.6. It is folklore that the theory of Quantum mechanics may be encoded
as a suitable one-dimensional quantum field theory where the corresponding bor-
dism category is endowed with the geometric structure of Riemmanian metrics. In
particular, special emphasis needs to be given to the target of our quantum field
theory so as to properly encode quantum mechanics. The idea is the following. For
a smooth functorial field theory F : Bord

Riemf
1

p8,1q
Ñ C where C is a suitable (smooth)

symmetric monoidal p8, 1q-category (ideally with duals) of values. Typically we
would assume C to be something like the p8, 1q-categorical version of the category
of vector spaces (i.e. the Rezk nerve of Vect), or even Hilbert spaces etc. An object

of Bord
Riemf

d

p8,1q
, say a single point ‚ is mapped to the state space c :“ Zp‚q P C.

A 1-morphism, that is, a bordism r0, ls of length l is mapped to an automorphism
Fl : c Ñ c. Functoriality then implies that if we have composable bordisms with
lengths r0, ls, rl, l ` l1s, then we have

Fl`l1 » Fl1Fl

which is precisely the time propagation property of the solution to the Schrödinger
equation l ÞÑ e´iℏHl, where H denotes the Hamiltonian of the given quantum me-
chanical system.

We recall that in our setting the notion of a U -family of d-framings was encoded
by means of the representable enriched presheaf よpRd ˆ U ↠ Uq. We then note
that Bord

よpRdˆU↠Uq

p8,dq
has a canonical object:

Definition 9.7. Let d ⩾ 0 and let teiu
d
i“1 be the standard orthonormal basis of Rd.

Let

pt :“
´

Rd, tCk ˆ U | 1 ⩽ k ⩽ du, 1: Rd ˆ U Ñ x1y, pidRdˆU , idU q

¯

be the object in Bord
よpRdˆU↠Uq

p8,dq
p0, x1y, Uq with Ck :“ spantei | i ‰ ku, and

1: Rd ˆ U Ñ x1y is the constant 1-function, while pidRdˆU , idU q is the geometric
structure given by the identity morphism in FEmbdpRd ˆ U ↠ U, Rd ˆ U ↠ Uq.
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By the Yoneda Lemma the above object may be interpreted as a map

pt : jp0, x1y, Uq Ñ Bord
よpRdˆU↠Uq

p8,dq

This gives rise to an evaluation map

Funb
pBord

よpRdˆU↠Uq

p8,dq
,Cqˆ MappjU,Cˆq

Funb
pjp0, x1y, Uq,Cqˆ Mappjpx1y, Uq,Cˆq

pt‹

–

–

evalpUq

where the isomorphism Funb
pjp0, x1y, Uq,Cqˆ Ñ Mappjpx1y, Uq,Cˆq is induced by

the adjunction from Lemma 7.134 for m “ 0, while the other isomorphism follows
from the fact that jx1y is the monoidal unit with respect to the Day convolution
tensor product. Evaluation at pt leads to the the Geometric Framed Cobordism
Hypothesis:

Theorem 9.8 (Geometric Framed Cobordism Hypothesis [17]). Fix d ⩾ 0, U P Cart,
and let C be a smooth symmetric monoidal p8, dq-category with duals. The smooth
symmetric monoidal p8, dq-category Funb

pBord
よpRdˆU↠Uq

p8,dq
,Cq is a smooth sym-

metric monoidal 8-groupoid, i.e., the inclusion of the core yields a weak equivalence
in C8Catb,:

p8,dq
:

Lt1,...,du

´

Funb
pBord

よpRdˆU↠Uq

p8,dq
,Cqˆ

¯

Funb
pBord

よpRdˆU↠Uq

p8,dq
,Cq

»

where Lt1,...,du was defined right before Lemma 7.135. Furthermore, evaluation at
the point (see 9.7) yields an equivalence of smooth symmetric monoidal 8-groupoids

evalpUq : Funb
pBord

よpRdˆU↠Uq

p8,dq
,Cqˆ MappjU,Cˆq

»

Remark 9.9. We note that if we evaluate the above weak equivalence at U “ R0,
we obtain an equivalence

Funb
pBord

よpRdˆU↠Uq

p8,dq
,CqˆpR0q MappjU,CˆqpR0q – CˆpUq

»

which gives a U -family version of Lurie’s topological cobordism hypothesis (Theo-
rem 9.2).

Theorem 9.10 (Geometric Cobordism Hypothesis [17]). Let d ⩾ 0, and fix a smooth
symmetric monoidal p8, dq-category C with duals and a d-dimensional geometric
structure S with isotopies. Let Cˆ

d : FEmbop
d Ñ Psh∆pΓ ˆ Cartq be the (fibrant)

simplicial presheaf with values in smooth symmetric monoidal 8-groupoids defined
by

pM ↠ Uq ÞÑ Funb
pBord

よpM↠Uq

p8,dq
,Cqˆ

The smooth symmetric monoidal p8, dq-category Funb
pBordSp8,dq,Cq is a smooth

symmetric monoidal 8-groupoid, i.e., the inclusion of the core yields a weak equiv-
alence in C8Catb,:

p8,dq
:

ct1,...,du

´

Funb
pBordSp8,dq,Cqˆ

¯

Funb
pBordSp8,dq,Cq

»
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Furthermore, we have a natural weak equivalence (in fact, an isomorphism)

Funb
pBordSp8,dq,Cqˆ » MapFEmbd

pS,Cˆ
d q

Proof. By the enriched version of Corollary 6.43 and Proposition 8.22 we know that
any geometric structure S may be written as a homotopy colimit

S » hocolim
RdˆUÑS

よpRd ˆ U ↠ Uq

We then calculate

Funb
pBordSp8,dq,Cq » Funb

pBord
hocolim
RdˆUÑS

よpRdˆU↠Uq

p8,dq
,Cq

» holim
RdˆUÑS

Funb
pBord

よpRdˆU↠Uq

p8,dq
,Cq

» holim
RdˆUÑS

Cˆ
d pRd ˆ U ↠ Uq

» holim
RdˆUÑS

MappよpRd ˆ U ↠ Uq,Cˆ
d q

» holim
RdˆUÑS

ż

N↠V

MappよpRd ˆ U ↠ UqpN ↠ V q,Cˆ
d pN ↠ V qq

» holim
RdˆUÑS

MapFEmbd
pRd ˆ U ↠ U,Cˆ

d q

» MapFEmbd
pS,Cˆ

d q

□

The geometric cobordism hypothesis is therefore really all about smooth spaces
of field theories and it tells us that we can calculate these by instead calculating
the simpler objects MapFEmbd

pS,Cˆ
d q. In practice we can use the following scheme

to calculate MapFEmbd
pS,Cq:

(i) Guess a candidate D : FEmbop
d Ñ Psh∆pΓ ˆ Cartq which satisfies the

descent condition with respect to FEmbd.
(ii) Write down any natural map W : D Ñ Cˆ

d .
(iii) Prove that the composition of maps

DpRd ˆ U ↠ Uq Cˆ
d pRd ˆ U ↠ Uq » Funb

pBord
よpRdˆU↠Uq

p8,dq
,Cq

MappjU,Cˆq

W

evalpUq

is a weak equivalence.
(iv) From this we deduce (by the 2-out-of-3 property) that W is a local weak

equivalence.

Example 9.11. Consider the 0-dimensional bordism category Bord
C8

p´,Xq

p8,0q
endowed

with the (unenriched) geometric structure from Example 8.9. Moreover, denote by
V the smooth symmetric monoidal 8-groupoid given by the assignment

pxly, Uq ÞÑ Vpxly, Uq :“ C8pU,Rql

where the set C8pU,Rq is interpreted as a constant simplicial set. Noting that
FEmbCart0 “ Cart, the geometric cobordism hypothesis states that

Funb
pBord

C8
p´,Xq

p8,0q
,Vq » MapCartpC

8p´,Xq,Vq
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»

ż

UPCart

MappC8pU,Xq,VpUqq

The Yoneda lemma then implies

Funb
pBord

C8
p´,Xq

p8,0q
,Vq » VpXq “ C8pX,Rq‚

Hence, the smooth space of 0-dimensional smooth functorial field theories with
geometry C8p´,Xq is the space of smooth functions from X to R.
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