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NOTATION AND CONVENTIONS

Throughout, the calligraphic letters o/, 3B,€,2,& and so on will usually refer
to some flavour of category (1l-category, bicategory, co-category etc.). Fracture
symbols 2(, B, €, F, £ 91 and so on will usually refer to some flavour of functors. Let
& be a category. The associated Hom-set for two given objects ¢, ¢’ is denoted by
€ (c,c’) and the corresponding Hom-set functor is written as €(—, —): €°P x € —
Set. The covariant Yoneda embedding

X: @ — Set®”, c— B(—,c)
is denoted by the japanese letter & which is phonetically given by "yo". The
contravariant Yoneda embedding

Au: B — Set? c— Ble,—)
is denoted by the japanese letter 5. which is phonetically given by "fu". To make

explicit to which category such a Yoneda embedding corresponds to we shall some-
times write &g and S.¢. For functors §,4: € — 2 we shall sometimes write

D(F,—): € x D — Set, D(—,80): P — Set, D(F,4U): P x € — Set
for the induced Hom-functors given by the compositions
g g S gop g 20T gy

idx D(—,—)

PP x € DP x P ——— " Set

gop g ST gop g 2T gt

where §°P: €°P — P°P denotes the opposite functor of §.



ABSTRACT

The unknown thing to be known
appeared to me as some stretch of
earth or hard marl, resisting
penetration. .. the sea advances
insensibly in silence, nothing seems
to happen, nothing moves, the
water is so far off you hardly hear
it... yet it finally surrounds the
resistant substance.

Alexander Grothendieck, Récoltes
et semailles, 1985-1987, pp.
552-3-1 The Rising Sea

The best gauge to determine how good a physical theory really is, is by look-
ing at the predictions the theory provides and comparing the resulting numbers
with real-world experiments. With regards to this measure, Quantum Field The-
ory (QFT) is probably the best physical theory there is to this date. Yet, a fully
general mathematically rigorous formulation of (non-topological) QFT is missing.
In this thesis we will study the functorial approach to QFT. More specifically, we
will study the specific approach taken in [16] and [17]. In particular, [17] provides
a classification theorem for smooth spaces of QFTs, referred to as the geometric
cobordism hypothesis. The geometric cobordism hypothesis is a generalization of
the topological cobordism hypothesis, which can be traced back to Baez and Dolan
(1995), and was later rigorously formulated by Lurie in [24].

This work aims to accomplish two goals. The first of these is to provide a self-
contained introduction to the somewhat intimidating realm of smooth functorial
field theory. This is why the first six chapters of this thesis are devoted to the
study of notions like simplicial homotopy theory, enriched category theory, model
categories, co-sheaves, co-categories etc. The only prerequisites to be had in order
to be able to follow the material is a good understanding of (ordinary) category
theory (algebraic topology is helpful, but not needed). The second goal of this
thesis is to provide a better understanding of the construction of smooth bordism
oo-categories endowed with geometric structures as defined in [16]. This is done by
first providing the rigorous construction of these objects, and by then looking at
some low-dimensional examples thereof. With that in hand, a smooth field theory
with some prefixed geometric structure should then just be an co-functor from the
given smooth bordism oo-category to some co-category of values. From there, we
will consider smooth spaces of field theories with prefixed geometry and explain
the geometric cobordism hypothesis, which, roughly put, states that such a space
of field theories is equivalent to “morphisms” from the given geometric structure to
the mazimal oo-subgroupoid of fully dualisable objects of the target co-category.



ABSTRAKT (DEUTSCH)

Wie gut eine physikalische Theorie wirklich ist, ldsst sich am besten feststellen,
wenn man die Vorhersagen der Theorie betrachtet und die daraus resultierenden
Zahlen mit realen Experimenten vergleicht. Im Hinblick auf diesen Mafstab ist
die Quantenfeldtheorie (QFT) wahrscheinlich die beste physikalische Theorie, die
es bis heute gibt. Dennoch fehlt eine vollstéindig allgemeine, mathematisch rig-
orose Formulierung der (nicht-topologischen) QFT. In dieser Arbeit werden wir
den funktoriellen Ansatz zur QFT studieren. Genauer gesagt, werden wir den
spezifischen Ansatz in [16] und [17] untersuchen. Insbesondere liefert [17] ein Klas-
sifikationstheorem fiir glatte Raume von QFT, das als die geometrische Kobordis-
mushypothese bezeichnet wird. Die geometrische Kobordismushypothese ist eine
Verallgemeinerung der topologischen Kobordismushypothese, welche auf Baez und
Dolan (1995) zuriickzufiihren ist, und spéter von Lurie in [24] rigoros formuliert
wurde.

Mit dieser Arbeit sollen zwei Ziele erreicht werden. Das erste Ziel besteht darin,
eine in sich geschlossene Einfiihrung in das etwas einschiichternde Gebiet der glatten
funktoriellen Feldtheorie zu geben. Aus diesem Grund sind die ersten sechs Kapitel
dieser Arbeit dem Studium von Gebieten wie simplizialer Homotopietheorie, an-
gereicherter Kategorientheorie, Modellkategorien, co-Garben, oo-Kategorien usw.
gewidmet. Die einzigen Voraussetzungen, die man haben muss, um dem Material
folgen zu konnen, ist ein gutes Verstdndnis der (gewohnlichen) Kategorientheorie
(algebraische Topologie ist hilfreich, aber nicht erforderlich). Das zweite Ziel dieser
Arbeit ist es, ein besseres Verstédndnis fiir die Konstruktion von glatten Bordismus-
oo-Kategorien zu schaffen, die mit geometrischen Strukturen ausgestattet sind, wie
sie in [16] definiert sind. Dies geschieht, indem wir zunéchst die rigorose Konstruk-
tion dieser Objekte bereitstellen und dann einige niedrig-dimensionale Beispiele
dafiir betrachten. Eine glatte Feldtheorie mit einer vordefinierten geometrischen
Struktur sollte dann einfach ein oo-Funktor von der gegebenen glatten Bordismus
oo-Kategorie zu einer co-Kategorie von Werten sein. Von dort aus werden wir glatte
Réume von Feldtheorien mit gegebener Geometrie betrachten und die geometrische
Kobordismus-Hypothese erklaren, die, grob gesagt, besagt, dass ein solcher Raum
von Feldtheorien dquivalent zu Morphismenvon der gegebenen geometrischen Struk-
tur zum mazimalen o0-Untergruppoid von vollstindig dualisierbaren Objekten der
Ziel-oo-Kategorie ist.
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1. INTRODUCTION

The integration of mathematical concepts from homotopy theory into the study
of physics is increasingly recognized as a valuable approach for tackling fundamen-
tal problems. This framework offers powerful tools that facilitate a deeper under-
standing of complex phenomena and may pave the way for solutions to currently
intractable physical questions. One such compelling reason to go homotopy coher-
ent lies in the quest for a rigorous formulation of quantum field theory. The lack
of a proper definition for the Feynman path integral, a fundamental concept in this
field, hinders its mathematical foundation. Homotopy theory (and in turn higher
category theory) offers a compelling approach to tackle this issue. Its tools and
techniques enable us to construct a solid framework for the Feynman path integral,
paving the way for a rigorous treatment of quantum field theory. In this thesis we
will first provide a self-contained introduction to some of the mathematical machin-
ery that is common practice within the subject of smooth functorial field theory.
After that, we will concern ourselves with the study of smooth co-bordism cate-
gories along with the classification theorem regarding smooth field theories called
the geometric cobordism hypothesis (as stated and proved in [17]). The geometric
cobordism hypothesis is a generalization of the topological cobordism hypothesis
which dates back to Baez and Dolan (1995) and was popularized by Jacob Lurie in
his paper [24].

In this introduction we shall quickly sketch each individual part of the thesis and
give some of the main ideas:

1.1. On Part I. As already mentioned, the first part of the thesis is on prerequi-
sites.

1.1.1. Simplicial Sets. In the first chapter we introduce the notion of a simplicial
set. Good references on this subject are [15, 33, 21]. The idea of a simplicial set is
that, up to homotopy, it is just as good a notion for space as a topological space, yet
simplicial sets are far easier to work with as their nature is combinatorial and every
such simplicial set may be obtained by glueing triangles, tetrahedra and higher
dimensional versions of these. For example, a simplicial set could look like:

N
=7 NS
I,

\.

More precisely, a simplicial set X, is a list of sets
XO; le X?a X37 cee

indexed by the natural numbers. Moreover, there are so called face and degeneracy

NV

maps dgn): X, — X,—-1 and SE"): X, — X,+1. These maps are then subject to
some relations. One can then diagrammatically depict a simplicial set by
%
— -
Xo i/ Xj +— Xo



where we only drew the face maps. The question now is why would we be interested
in having a combinatorial variant to topological spaces. First of all, it turns out
that the category of simplicial sets is rich enough so that the theory of category
theory, i.e. the category of small categories, is fully faithfully contained within the
category of simplicial sets. This is seen by taking the nerve of a category. Indeed,
for a category €, denote by 916, the collection of sets

{‘ﬂ%n} N = {n—tuples of composable morphisms in ?5}
ne

where 0-tuples of composable morphisms are identified with objects in the category
%. It is shown that this nerve construction extends to yield a functor between
the category of small categories and the category of simplicial sets 91: Cat — sSet
which is fully faithful. Moreover, the category of simplicial sets allows for the
notion of simplicial homotopy theory, which is equivalent in the proper sense to the
homotopy theory of topological spaces. In that framework, the following picture of
two functors and a natural transformation between these

€ ¢ D

is equivalently given by saying that we have a simplicial homotopy between the
respective nerves of functors. In particular, after having developed more machinery
it will be noted that the category of simplicial sets and its associated homotopy
theory is a model for the notion of co-groupoids.

1.1.2. Model Categories. After having concerned ourselves with simplicial sets we
come to the concept of a model category. A good reference for this field is [19].
At that point we realize that the category of simplicial sets, just like the category
of topological spaces is a model category. Roughly put, model category theory is
the study of abstract homotopy theories. The objects of study in this field are
the so-called model categories, which can be thought of as categories which allow
for a proper notion of deformation, that is, some object A may be deformed (is
homotopic) to another object B. More precisely, a model category is a category
% with distinguished classes of morphisms %%, Fibg and Cofg, referred to as weak
equivalences, fibrations and cofibrations which are subject to some axioms. Here the
canonical example to think of is the model category of topological spaces, which,
for example, has as its set of weak equivalences the set of weak homotopy equiva-
lences. There now has to be some notion of equivalence for model categories. This
concept is referred to as a Quillen equivalence of model categories. The existence
of such a Quillen equivalence between two model categories says that the respective
homotopy theories are precisely the same. The most prominent such equivalence is
the adjunction between the geometric realization functor | —| and the fundamental
oo-groupotd functor Igq:

sSet 1Quillen Top
T<o,
Roughly put, the left adjoint | —| takes a simplicial set and realizes it as a topological

space, e.g., the geometric realization of the above depiction of a simplicial set is
given by filling out the triangles to proper triangles with area in R? and then glueing
them along their edges. The right adjoint II<., takes a topological space X and
maps it to the simplicial set [T X, for which we have:

IT¢ 0 Xo := points of X
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II¢n Xy := paths in X
IT¢ X5 := homotopies of paths in X

IT¢ X, := homotopies of homotopies ... of paths in X

Finally, we will talk about the notion of what it means for a functor between model
categories to be homotopical (i.e. it preserves all the homotopical information
of our given model category), and we will discuss that if our functor fails to be
homotopical, we may still have a chance by taking the respective left or right
derived functors (if they exist), which are the closest homotopical approximations
to our initial functor. In particular, this will give rise to the notion of homotopy
limit and colimit functors, which are right and left derived functors of the usual
limit and colimit functors, respectively.

1.1.3. o0-Categories. Good references on co-categories are given by [26] and the
respective parts in [8] and [24]. An oco-category should be the precise mathematical
entity of a higher dimensional category in the sense that it should not only have
objects and morphisms, but also morphisms between morphisms and morphisms
between morphisms between morphisms and so on. In other words, an co-category
% should be a collection of sets

6o, €1, 62,63, ..

where %) is the set of objects while &,, denotes the set of n-morphisms. In particu-
lar, there should be source and target maps for each individual level of morphisms

s e - Grn_1, t. g, - €, 1
as well as composition maps
M Cn Xz . Cn — Cn

where €, X, _, €y denotes composable n-morphisms with regards to the aforemen-
tioned source and target maps. Moreover, we need units with respect to composition
in each layer:

n—1

W€, — C,

A canonical example of such an entity is the fundamental co-groupoid Il X for
some topological space X. We recall that objects are given by points, 1-morphisms
are given by paths, 2-morphisms are given by homotopies of paths and so on. Com-
position of morphisms is given by concatenation of paths, homotopies, etc. The
unit maps are the constant paths, homotopies, and so on, while source and target
maps are the obvious choices. Upon further inspection we realize that composition
of paths, homotopies, ...is not unique, but only unique up to homotopy. This
is a general theme when it comes to co-categories: Composition will not be as-
sumed to be unique, but only unique up to homotopy. The reason for this is that
strict co-categories do not capture the most interesting examples that might pop
up in practice (as for example topological spaces). In particular, when we consider
II¢n X yet again we notice that all morphisms (in every layer) have an inverse
up to (higher) homotopy. This is the reason for calling II¢,, the fundamental oo-
groupoid functor, as, by definition, <., X is an co-groupoid (all morphisms have
inverses up to homotopy) for all topological spaces X. In fact, Grothendieck’s ho-
motopy hypothesis states that any sensible notion of co-groupoids should imply that
co-groupoids are precisely the homotopy types of topological spaces. Using this as
the literal definition is then saying that any oo-groupoid is realized by considering
II<x X for some suitable topological space X.
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An co-groupoid is also often referred to as (o0, 0)-category, as although the category
at hand has infinitely many layers, 0 layers of them have non-invertible morphisms.
An (o0, d)-category on the other hand also has infinitely many layers, but only
the first d layers of morphisms may contain non-invertible morphisms, while all
(d+1),(d+2),...-morphisms are invertible up to homotopy. We can use an induc-
tive formulation to roughly define the notion of (o0, d)-category. An (o, 1)-category
€ is the data of a set of objects €y, and an oo-groupoid (a space) of 1-morphisms
%1. The points €10 := < (€1)o in this space of morphisms are the 1-morphisms
in €, the paths are the 2-morphisms and so on. An (o0, 2)-category € is then the
data of a set of objects €y as well as an (00, 1)-category of 1-morphisms €1. The
1-morphisms in € are the objects of %1, while the higher morphisms are given
by the fundamental co-groupoid of the space of 1-morphisms of @i, denoted by
< (@1,1). Continuing in this way, an (oo, d)-category is the data of a set of ob-
jects €o and an (00,d — 1)-category €1 of 1-morphisms. We then remind ourselves
that the model category of simplicial sets and the model category of topological
spaces have the same homotopy theories (this is witnessed by the aforementioned
Quillen equivalence). In that sense, instead of using topological spaces as a def-
inition for co-groupoid we can also just use very nice simplicial sets called Kan
complexes as our model for co-groupoids. Using again an inductive procedure as
before, we quite naturally arrive at the definition of d-fold complete Segal spaces
which present a fully rigorous simplicial version of (o, d)-categories.

This is not the end of the road however, we want to define (00, d)-categories with
extra structure. In fact, we will make sense of the notion of symmetric monoidal
(o0, d)-category, which roughly put is an (o0, d)-category € equipped with a tensor
o-functor ®: € x € — €, that is, a collection of maps

{®n: G0 x 60— G

neN

where &,, denotes the set of n-morphisms in € (if n = 0, €, is the set of objects),
which satisfy coherence conditions. Morally, ® tells us how to multiply objects,
1-morphisms, ...in €. We still do not stop there and define the notion of smooth
symmetric monoidal c0-categories. In order to give the idea, let Cart be the category
of cartesian spaces, which has as its set of objects open subsets U of R, for some n,
such that U is smoothly diffeomorphic to R™. Morphisms in Cart are then simply
smooth maps between cartesian spaces. Vaguely put, a smooth symmetric monoidal
(o0, d)-category & is then nothing else than a contravariant functor into symmetric
monoidal (o0, d)-categories

@: Cart®® — Cat® ,, U~ ()

such that for any good open cover {V;};er of U in Cart we have that €(U) may be
given as the homotopy limit of the diagram

&V 7 11 60, n V) =TI %V Vi n Vi) ———F ...

el io,ilEI io,il,igel

Morally, this says that & is an co-sheaf of symmetric monoidal (o0, d)-categories,
that is, local higher dimensional information can be glued to obtain higher dimen-
sional global information. Finally, we will define the notion of full dualizability for
smooth symmetric monoidal (00, d)-categories, which more or less says that each
layer (also all objects) have adjoints (duals). One may then collect all this infor-
mation to arrive at the model category of smooth symmetric monoidal categories

with duals €% Catl,! .
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1.2. On Part II. This part of the thesis is based upon the works [16] and [17], as
well as on private communication with Dmitri Pavlov.

If we interpret an oco-category as a language in the literal sense, then a quantum field
theory would be a translation from some language of spacetime to some language
of values. More precisely, a d-dimensional smooth quantum field theory is a smooth
symmetric monoidal co-functor from some smooth (oo, d)-category of bordisms to
some smooth (o0, d)-category of values. The first goal of this part of the thesis is
to properly introduce these smooth bordism categories.

1.2.1. Smooth Bordism oo-categories. Since we want our bordism categories to be
endowed with some geometry (e.g. Riemannian metrics), we start off this chapter
by properly introducing the notion of a d-dimensional geometric structure with
isotopies as discussed in [16]. Very roughly put, a geometric structure is an co-sheaf,
on the simplicially enriched category §Emb, of fiberwise embeddings, valued in oo-
groupoids. To give at least some explanation here, the category §€mb, has as its
set of objects fiberwise d-dimensional submersions p: M — U, where M is a smooth
manifold while U € Cart is a cartesian space. After discussing some examples in
this formalism, we will move on to the definition of the smooth (o0, d)-category
of bordisms with geometry S, denoted iBotD?oc’d), where S is some d-dimensional
geometric structure. The construction is roughly as follows:

e Objects of %otb(soo’d) are smooth families of disjoint unions of points in a
d-dimensional manifold equipped with a d-dimensional germ of the given
geometric structure S.

e l-morphisms are smooth families of 1-dimensional manifolds with bound-
aries between smooth families of disjoint unions of points embedded within
a d-dimensional manifold, which is again equipped with a d-dimensional
germ of the given geometric structure.

e d-morphisms are smooth families of d-dimensional manifolds with corners
which are equpped with a d-dimensional germ of the given geometric struc-
ture S.

e d + l-morphisms are smooth families of isotopies of diffeomorphisms be-
tween d-dimensional manifolds with corners.

e d + 2-morphisms are smooth families of isotopies of isotopies ... etc.

o ...

After giving a precise definition of the above, we will carry on to investigate prop-
erties of the assignment S +— EBotD(soo’d). It will turn out that this gives rise to a
functor

Bow(,),: Steucts — G7Cat(,

from the category of geometric structures to the category of smooth symmetric
monoidal (o0, d)-categories with duals, which itself will be an co-cosheaf. This is
the so-called locality property, which may also be phrased by saying that %orbgz d
preserves homotopy colimits. Finally, we will discuss the symmetric monoidal struc-
ture of %otb(soo’d) and its duals as well as consider specific examples including Rie-
mannian bordism categories.

1.2.2. Smooth Functorial Field Theories. Finally, we can say more clearly what a
smooth functorial field theory with geometry S really should be, namely a smooth
symmetric monoidal co-functor %otb(sooy 4y — €, where € is some smooth symmetric
monoidal (oo, d)-category of values. We may then first state the content of the
framed geometric cobordism hypothesis. To this end, we first realize that if we take
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the (enriched) Yoneda embedding & (R? x U — U) of the canonical projection map
(R x U — U) € F¢mby, then the resulting geometric structure models smooth
U-families of framings for the given input manifolds. We can then consider the
smooth symmmetric monoidal (o0, d)-functor category
E(RIxU—»U

Fun®(%0tb(oé’d)>< ),‘5)
for € some smooth symmetric monoidal (00,d)-category with duals. The first
statement of the framed geometric cobordism hypothesis says that the assignment

- d
U+— Fun®(%0t0(°Loén§)XU%U), %) is actually a functor valued in smooth symmetric

monoidal co-groupoids:

The second and even more important statement is that evaluation at a U-family of
points gives rise to an equivalence of co-categories

Fun®(Boro S5 V=), %) = Map(U, 6*)

where €* is the maximal full co-subgroupoid in €, while Map(U, €*) denotes a
smooth symmetric monoidal oco-groupoid of maps from U to €*. If one forgets
the smoothness property on both sides of the equivalence (by evaluating at the
singleton cartesian space R°) one arrives at

Fun®(Boro " V1), %) (RY) ~ €7 (U)

d)
The general geometric cobordism hypothesis makes similar claims. First of all, we
have a functor

Gtruct® — €*°Grpd®, S +— Fun®(%0t0(soo7d), %)
which has values in smooth symmetric monoidal co-groupoids. Moreover, we have
an equivalence of co-categories
Fun®(%0ta(soc,d)v %) — map&@mbd (Sv (‘g;)
where, morally speaking, € is identified with €* (this is not quite true), while

Mapzeme, (S, €y ) denotes a smooth symmetric monoidal co-groupoid of maps from
the geometric structure S to € .
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2. SIMPLICIAL HOMOTOPY THEORY

Education never ends, Watson. It
is a series of lessons, with the
greatest for the last.

Sherlock Holmes (Sir Arthur
Conan Doyle)

This chapter is based on [11], [28] and [15].

Simplicial sets are a powerful tool in algebraic topology that provide a combi-
natorial framework for studying spaces. They are a way to encode the topology
of a space using a collection of abstract building blocks called simplices, which are
higher-dimensional generalizations of triangles and tetrahedra. In this chapter, we
will explore the basic concepts and properties of simplicial sets, including their
given homotopy theory. In between, we shall also introduce the notion of ends and
coends as they will provide a powerful tool throughout.

2.1. A Theory of Simplices.

Definition 2.1. The simplezx category A has
e objects [n] ={0,1,...,n} for n € N, and
e morphisms f: [n] — [m] are order preserving maps, i.e., f(i) < f(j) for
all 4 < j.

The simplex category is a combinatorial framework for the collection of topolog-
ical spaces that is made up of the standard topological n-simplices. More precisely,
there is a functor

A—"1 s Top, [n] —— |A"]

where generating
|A™] = {(mo, conxp) €RMT gy > O,in = 1}

is endowed with the subspace topology induced from the Euclidean topology on R™.
Oun the other hand, a morphism f: [n] — [m] in the simplex category is mapped
to the continuous map |f|: |A"| — |A™| given by

m
(1) |A”|9x»—>< 3 x) e |A™|
s€[n]: f(s)=i =0
In order to give a framework for more general topological spaces, one introduces
the notion of a simplicial set, or more generally the notion of a simplicial object.
This is motivated upon noticing that many topological spaces can be obtained by
glueing n-simplices.

Definition 2.2. Let € be a category.

e A simplicial object in € is an object in the functor category €™ .
o A simplicial set is a simplicial object in Set. The category of simplicial
sets will be denoted by sSet := Set®™ .
e For X € sSet we write X,, := X ([n]) and Xy := X(f) for any object [n]
and any morphism f in the simplex category A.
e An element z € X, is called an n-simplex of the simplicial set X.
It is immediate from the Yoneda lemma that we have an embedding A < sSet
given by [n] — A™ := A(—,[n]). In particular, for X € sSet we have

X, = sSet(A"”, X)



This means that any n-simplex = € X, uniquely corresponds to a simplicial map
(natural transformation) z: A™ — X.

The category A has a generating set of morphisms. Indeed, we may define

k, if k<
k+1, ifk>i

coface maps ~ ¥n = 0: [n—1] ﬁ [n] d'(k) = {

si

. k if k<1
codegeneracy maps Vn =2 0: [n+1] - [n] s'(k) = { ’ ! !

kE—1, ifk>i
and these maps give rise to the following:

Lemma 2.3. Any morphism f: [n] — [m] in A can be written as a (unique)
composition

f=d*o...drosto... s
with0< i, <...<i1<mand 0< j1 < ... <jy<n, wherer —l =m —n.

The above lemma can be understood in an intuitive fashion by staring at

0 ——0 0 0 0
1 1 1 1
2>‘>2 SN 2\1 2
3 3 3 3
4 4 4 4

Indeed, the LHS above is a sample arrow [5] — [5] and the RHS gives a decompo-
sition of this arrow into a composition of codegeneracy maps (the stuff to the left
of the dotted line) followed by a composition of coface maps (the stuff to the right
of the dotted line). Seeing that the first half of the RHS is a composition of coden-

eracy maps is done as follows: We start with the arrow [5] LR [4] (which doubles

2
up at 1), then postcompose this with [4] 2> [3] and this in turn we postcompose

2
with [3] = [2]. The complete composition s2s2s! is exactly equal to the morphism

given by everything left to the dotted line. Analogously, the morphism given by
everything right to the dotted line is precisely the composition d°d3d?.

For the notion of a simplicial set, the above Lemma tells us that what a simpli-
cial set X does to morphisms f € A is completely determined by what it does to
codegeneracy and coface maps. Hence the following definition makes sense:

Definition 2.4. Let X € sSet.
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(i) The i-th face operator associated with the simplicial set X is given by
di = Xdii Xn d Xn,1

(ii) The i-th degeneracy operator associated with the simplicial set X is given
by

S; = Xsii Xn i Xn+1
n—1
(#) An element x € X, is called non-degenerate if x ¢ | $;(Xp—1).
i=0

Definition 2.5. Let X, X’ € sSet. The product X x X’ € sSet is the simplicial set
given by (X x X'), = X,, x X}, and (X x X')y = Xy x X} for all objects [n] and
all morphisms f in A.

Definition 2.6. Let X,Y € sSet. We write Y < X and say Y is a simplicial subset
of X, if there is a monomorphism Y — X.

Remark 2.7. More concretely, Y < X if Y,, ¢ X,, for all [n] € A and
Xf‘Ycodf = Yf
for all morphisms f € A.

Recall that the standard n-simplex A™ was defined by A(—,[n]) € sSet. There
is a canonical way to extract important simplicial subsets of A™:

Definition 2.8. Let # be a subset of the power set 2([n]) of the finite ordinal [n]
and define the simplicial subset

A{F)c A"
by

Ay ={Fe Ay |37 72 f(Im) < T}

Example 2.9. We list some of the most important simplicial subsets of A™:
e The standard n-simplex itself is given by A™ := A(—, [n]) = A(P([n])) €
sSet.
— For n = 2 we have

P(12) = {210}, 11,12}, 10,1}, (0,2}, (1,2}, 01,2}
We may then visualize A2 = A(P([2])) as follows:
1

0 2

The vertices of our (filled) triangle are represented by the singletons
0,1, 2, while the edges are given by the 2-element sets in %([2]). The
triple {0, 1,2} represents the 2-lined arrow going from the composite
of 0 — 1 and 1 — 2 to the bottom 0 — 2. We think of A? as being
the whole triangle (with area).
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— For n = 3 we have
P([3]) = {Q, {0}, {1},{2}, {3}, {0,1},{0,2},{0, 3}, {1, 2}, {1, 3}, {2, 3},
{0,1,2},{0,1,3},{0,2,3},{1,2,3},{0,1,2,3}}

Visualizing A? is then a little harder:

The above picture is to be interpreted analogously. The vertices are
the singletons, the edges are given by the 2-element sets and the faces
(the sides of our pyramid) are given by the triples in 9([3]) while the
3-lined arrow represents the filling {0, 1,2, 3}.
e Consider the subset d; := {0,...,%,...,n} < [n] along with the induced
collection of subsets

7= 9([n])\{[n],ao,...,@, N .,an}

The i-th face of A™ is the simplicial set 0;A™ := A{%).
— For n =2 and ¢ = 0 we have:

5 = {0}, (1}, (2}, (1,2}
We then get a picture:
1

2

The vertices {1} and {2} are depicted in our diagram since they have
a corresponding connecting edge {1,2}. The singleton {0}, on the
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hand, is not connected to the above one-arrow graph, and therefore
is not pictured at all.
— For n = 3 and 7 = 0 we have:

Jo = { @10}, {1}, {2}, (3}, {01}, {0,2), {0,3}, {1,2}, {1, 3}, {2, 3}, {1, 2.3}
We therefore get the following picture:
1

2

Again extending on the previous ideas, we really only draw the edges
which happen to be connected by some face.

— Let 7 := 2([n])\{[n]}. The simplicial boundary of A™ is the simpli-
cial subset 0A™ := A(f), i.e.,, 0A™ = J ;A"

— For n = 2 we have the following picture:

VAN
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— For n = 3 we have the following picture:

Hence all that is missing compared to the visualization of A® is the
volume of the pyramid, that is, the squiggly arrow.
o Let 7 := P([n])\{[n], 0;}. The i-th simplicial horn of A™ is the simplicial
subset A" := A{F).

— For n =2 and 7 = 0, we obtain the picture:

1
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— For n = 3 and ¢ = 0 we have the picture:

Looking at the 3-dimensional case, it is clear why this simplicial subset is
called horn.

2.2. Ends and Coends. This chapter is based on the corresponding chapters in
[7] as well as [23].
In the following we shall explain the notion of ends and coends. These will be
very helpful machinery for what is to come.
Definition 2.10. Let §: &/°P x o/ — 2 be a functor.
o A wedge for § is a pair
(teo,  v={ved—3@a} )
aed

such that for all morphisms ¢ — @ in & we have a commutative diagram

&aix&,ﬁ)
$(a,a)
%_»a)

For a wedge as above, the family of morphisms ¢ will usually be denoted
by ¢: d->3F.
e A cowedge for § is a pair

(13, o= fouitea ) )

$(a@
>
Iy
S(a

@)
a)
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such that for all morphisms a — @ in &/ we have a commutative diagram

(a, V \
d
am /
,a)

For a cowedge as above, the family of morphisms v will usually be denoted
by ©¥: §=>d.
e An end of § is a universal wedge

[oeor o Lo
for §.

e A coend of § is a universal cowedge
o o
([ se2. wi5>] s
for §.

More concretely, what does it mean to be a universal (co)wedge for §? Let us
start off with ends: First of all note that the definition of a wedge induces a functor

(2) Ez: Q% > Set,  de— {wedges T dsg}

§(a

An end of § is then defined to be a representation of the functor Eg, i.e. there is

an object { & € D such that
FEr =9 —,f 5

By the Yoneda lemma this datum boils down to the statement that an end is a
terminal object

(J 5 ¢ J §5F) < el(Fy)

o o

in the category of elements (see Remark 2.11) of Ej.

Remark 2.11. Recall that, in general, the category of elements el(il) of a functor

$l: € — Set has as objects pairs (c €EC,de Llc) and morphisms
(ce %,deuc) N (Ee %,Jeua)
are morphisms f: ¢ — ¢ in € such that (4f)(d) = d.
Analogously, the definition of a cowedge induces a functor
Cz: D — Set, Y — {cowedges T: S#d}

By the same reasoning as above, a coend is simply an initial object

(ﬁs, ¢: S—»J ) € el(C5)

aced
Notation 2.12. It is sometimes useful to write § F(a,a) and § F(a,a) instead of
acd

o
{5 and § 3.
o
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Example 2.13. Let §: &/°P x o/ — Set. Then we have

JS ~ Set({*},f&) ~ {Wedges {*}_ug}

Note that a wedge {*}->F corresponds to a family of elements (T(a) € 5(a, a)) »
ae

such that for all morphisms ¢ — @ in & we have

$(a — a,a)((a)) = §(a,a — @)(7(a))
Remark 2.14. The notions of end and coend are dual. Indeed, the coend of a functor
F: AP xof — D is simply the end of the induced functor F: (F°P)°P x of P — PP,

Therefore, we may restrict ourselves to investigating coends, knowing that any
result that holds for coends can be dualized to yield a result for ends.

Theorem 2.15. If & is cocomplete and §: A°P x o — D is a functor, then the
coend SW $ exists in D. It is given by the coequalizer of two suitable morphisms
5*
. L ——
5(a,a) L1 3(a,a)

(f: a—>a)ed €. aed

Proof. We define the morphisms £* and &, by means of the universal property of
the coproduct:

~ 31 3
§(@.0) -2 11 §(0,0) §(@,0) -2 11 §0,0)
(f: a—a)ed aed (f: a—>a)ed aed
Lf Ly Ly 12
§(@a) 5@ 5@a) 8@ a) 50 §(a,a)
A morphism ¢: ][] §(a,a) — d with (& = (&* is then naturally identified with a
acd

cowedge §—d. Indeed, the cowedge associated to the morphism (, also denoted by
the letter (, is defined by

C = (Ca = CLa: %’(aaa) g d)aeszf
It is then not hard to check that

(1

5(a,

and thus the coequalizer of (* and (, is a universal cowedge for §. O

Remark 2.16. If we have a (co)continuous functor £: @ — &, then £ preserves

(co)ends:
T@ ~ fss Q(Js) ;fs{g'

k4 4
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In particular, we have

I

2(d, j §(a.a)) j@(d,sm,a»
aced aced
acd

9( [ §a.a).a)

I

J P(F(a,a),d)
aed
It turns out that the converse of Theorem 2.15 holds:
Theorem 2.17. Let §: o/ — D be a functor. Define a functor §: AP x of — D
by
3'(a,a) = §(@)
§'(a,a —a) = §(@— a)
S/(U, — a, a’) = 136
Then the colimit of § is the coend of §':
aed aed

coégng(a) =S J ¥ (a,a) = J Ja

Proof. A cowedge : 'Y is a family of morphisms (,: §(a) — d such that for all
a — a we have a commutative square

Fa —— Fa
Slami)| 2
Ja - d
which is exactly a cocone for §. O

Lemma 2.18. Let§: of — D andil: of — D be functors, and consider the induced
Hom functor

D(F, ) : AP x o — Set, (a,a) — D(Fa, 4a)
The end of this functor is given by
27 (F.4) = f 2(Fa, ta)
acd

Proof. From Example 2.13 we know that
2 (§(a), U(a)) = {wedges {+}>2 (5,4}
acd

The right hand side exactly corresponds to the set of natural transformations § —
10 O

Proposition 2.19 (Fubini for Coends). Let &/, %, € be categories and let §: (A x
RB)P x (A x B) —> €. Then

acd beB (a,b)ed x B beRB acd

f&(a,b,a,b); f F(a,b,a,b) ~ J f&(a,b,a,b)

where the above is to be understood in the sense that if one of these coends exists,
then all of them exist and are isomorphic.

Proof. This immediately follows from the analogous result on colimits, see e.g.
[35]. 0
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Coends turn out to be exceptionally useful for many reasons. One such reason
is that coends can be used to decompose functors. In order to derive such a result
we need to introduce some machinery first:

Definition 2.20. Let @ be a cocomplete category. The bifunctor ®: Set x 2 — 9
is given as follows:

Sed:=[]d (Se)eSet x D
seS
For morphisms in Set x 9 it is sufficient to define ® solely on morphisms of the
kind (f,id) and (id, g) (by functoriality). This is done by means of the universal
property of the coproduct:

e S [[e--2M% , 11¢ [Te 27990 1Te

S’ e —— ¢ e
where s runs over the set S.

Remark 2.21. The functor ® is a copower (or tensoring) of & over Set: This means
that the functor

®:Set x D —->D
gives rise to natural isomorphisms
D(S Ody,ds) = Set(S, D(dy,ds))
for all S € Set and dy,ds € 9. This follows immediately from

9<S®d1,d2) — .QZ(]_[dl,d> > [[2(d1, do) = Set(S,Q(dl,dz))
seS SES

Recall from analysis that if §(z,y) := 6(z —y) is the shifted Dirac-¢ distribution,
then any test function f can be written as

;= f 5z, =) f(x)dz = f6<—,y>f<y>dy

The aforementioned decomposition theorem for functions by means of the Dirac
0-distribution has a categorical analogue in terms of coends:

Theorem 2.22. Let §: o — D and Uh: J°P — D be functors, where o is a small
category and D is cocomplete. Then we have the following natural isomorphisms:
aed

T~ J sa®Fa
acedf

> J Fa®Ua

where X, 5 were introduced in .

Remark 2.23. The isomorphisms above are to be understood in the functor cate-

gories @7 and D7 | respectively. Taking the first of the two identities, the functor
aed
§ 3.4a®Fa takes an object @ in & and maps it to the coend

aced
J d(a,a)®Fa
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in the usual sense. Morphisms @ — @ are mapped to morphisms between the
respective coends, and these are defined by means of the universal property of the
coend.

Proof of Theorem 2.22. Let d € @ be arbitrary. We have natural isomorphisms
acd
2 ( f o (0,8) © Fa,d) = f P(of (a, @) © Fa,d) = f Set(f (a, ), 2 (Fa, d))
acd acd

> Set?” (k 43, D(F,d)) = D(Fa, d)

where we have used Lemma 2.18 and the Yoneda lemma for the last two isomor-
phisms. Since d € & was arbitrary the claim follows. O

Remark 2.24. One can dualize the above decomposition theorem as follows: Instead
of the bifunctor ® one defines a bifunctor M: Set®® x & — D for a complete category
D by
Set x @5 (S,d) > Shd:=[[de D
seS

How this functor acts on morphisms is defined in the same way as for ® (now
utilizing the universal property of the product). The functor M is a power (or
cotensor) of P over Set: This means that for each S € Set there are natural
isomorphisms

Set(S, g(dl,dg)) = g(dl, S dg)

The decomposition theorem for ends then reads

T f L gathFa
aed
for a functor §: o — D.

Theorem 2.22 is sometimes also called the density theorem. This name is very
much suiting since, if we are given a presheaf § € Set” p, then

acd
S;f d(—,a)®Fa =~ colim o(—,a)
(a,x)eel(F)
which tells us that the collection of representable presheaves in Set””™ is dense
in the category of presheaves Set” ! (any presheaf is a colimit of representable
presheaves). This will be explained (and proved) in more detail in Corollary 3.9.

Example 2.25. Recall that a simplicial set X is just a presheaf A°® — Set on the
simplex category. Thus Theorem 2.22 implies
[n]leA

X ~ J A" ® X, = colim A"
elX
Remark 2.26. Taking the coend of a functor in @7 %7 may very well be interpreted

as a functor
o

f;gdz“""wa@

o
The functor { then fits into an adjunction

H|—x

gdof’xd

o (—,—)h—
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where o/ (—, —) th — is the functor which takes an object d € @ to the functor

H de gdxd()p
W(fvf)
In order to see that this adjunction holds, we first note that the bifunctor &/ (—, —)
is equal to the coend

aed P

& (a,a)

where X: o x P — Set@*?*")” is the Yoneda embedding. Indeed, a quick
application of the coend calculus yields

(j J:(a,a)) (a',a") = Jd(a’,a) x o (a,a”)
>~ o (a,a")
by the fact that © = x in Set and Theorem 2.22. In order to then get the adjunction
a
9q&®zsww“ﬂmgﬁﬂn

we calculate
o

9([5.0)= [2E@a.q

", d(a,a") thd)

114
—
9
R
8
S

=~ G (F o (—, ) hd)

2.3. Nerve Realization Adjunction. This chapter is mostly based on the Nlab
article nerve and realization, [28] and [33].

Definition 2.27. Let §: € — 2 be a functor, for € a small category. Then the
nerve functor associated to § is the functor

Ng: D —Set®’, d— D(F,d)

It turns out that the previous construction is of particular interest to us: The
functor 9z will have a left adjoint | — |5 in most practical cases, and the corre-
sponding adjunction will be used to define several important future notions. The
question now is what kind of assumptions we have to impose on the ingredients
§,€ and 9 so that Mz indeed admits a left adjoin. It turns out that a sufficient
condition is to assume cocompleteness of :


https://ncatlab.org/nlab/show/nerve+and+realization
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Theorem 2.28. Let € be a small category and let D be a cocomplete category. If
§: € — D is a functor, then the induced nerve functor Nz: D — Set®” has a left
adjoint

| —|5: Set®” L D: Ng
given on objects il € Set®” by the coend
ce®
|U|z = J e ® Fe
In particular, | — |z is the unique cocontinuous extension of §, that is,
| &elg = Fe

for all objects c€ €.
Proof of Theorem 2.28. By Theorem 2.22
ce?

|&elz = J €(¢,c) ©Fc = Fc

For the adjoint correspondence we calculate:
ceE®
2( f e ® Fe, d) = J DO Fe,d) = f Set(tle, D(Fe, d) = Set®” (84, Ngd)
CcEF CcEF
O

Remark 2.29. Some remarks for generalizations and important notions are in order:

e The functor | — |3 acts on morphisms (4 — ) in Set®” by means of the
universal property of the coend.
e | — |z is the left Kan extension of § along the Yoneda embedding J:

This will be explained, in detail, later in section 3.

e There is a dual Theorem to Theorem 2.28: Let & be a complete category
and consider a functor §: € — 2. From this we may define the dual nerve
(or co-nerve)

Ne: DP — Set®, d> D(d, F)

The functor ‘)A’tg then fits into an adjunction

2

5

€°P Set®

[

=2

where the left adjoint ES is given on objects 4 € Set? by the end

QS = f e h Fe
CEC

In order to see that this is truly a left adjoint to ‘flg we calculate:
@op@$7 d) = @(dvg&')
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12

~ J D(d, the h Fe)
ceC

f Set (e, D(d, §c))
ce®

~ Set? (4, Nzd)

Moreover, Eg is the unique continuous extension of §, that is,

lle

- J @(c, o) h §T = Fe
ce®
Example 2.30 (Geometric realization). Recall from the very beginning of section

2 that there is a functor | —|: A — Top which sends [n] to the standard topological
n-simplex

A" = {(to,. . ta) e R™ 20,3 8 = 1}
i

This induces a functor
Mg == M) Top — sSet, M¢oY :=Top(| — |,Y) € sSet
By Theorem 2.28 we therefore obtain a left adjoint for the total singular complex
II<s given by
[n]ea
| —|: sSet — Top, | X| = f X, ©|A"]

Unravelling the definition of the coend, | X| is isomorphic to the quotient space
x| = ([ Xax 1)/ ~
n>=0

where ~ is the equivalence relation generated by pairs

(Xs@)w) ~ (2. 171@),  (Fwy) e A x X x |A7]

Since A has a generating set of morphisms, the above equivalence relation can also
be merely stated in terms of face and degeneracy maps. Thus, face and degeneracy
maps already provide all the necessary information for us to know how to glue.

Example 2.31. Let € be a small category and let
t: A — Cat

be the inclusion functor of the simplex category into small categories, i.e., the object
[n] is mapped to the category t[n] = {0 > 1 — ... — n}, which has n + 1 objects
and precisely n non-identity morphisms. An order preserving map f: [n] — [m] is
mapped to the corresponding functor ¢f: ¢[n] — ¢[m] induced from f. The nerve
of the category € is defined to be the simplicial set
NE =N, E: AP — Set, [n] — Cat(¢[n], ®)

More concretely, if € is a category with €, €1 the corresponding sets of objects
and morphisms respectively, then 0% is the simplicial set with simplices:

NEy = €

NE1 = 61

ME2 = {pairs of composable morphisms in €} = €1 xg, €1
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NE,, = {strings of n-composable morphisms in €} = €1 xg, ... Xg, G1

This leads to the so-called nerve functor 91: Cat — sSet (MN¥ is called the nerve
of the category €). Its left adjoint is called first truncation and is given again by
means of Theorem 2.28:

[n]leA

h: sSet — Cat, X — J Xn O n]

The functor b assigns to any simplicial set its corresponding homotopy category hX.
This description of b is fine, if we just want to know about the existence of the left
adjoint. However, the coend formula above does not really offer insights as to what
the category hX is really all about. Hence we shall also present a different, more
explicit construction of h.X: We start off by defining the set of objects of hX to
be Xy. The set of morphisms for hX is freely generated from X; subject to some
relations given by elements in X5 as follows: The degeneracy map so: Xo — X3
picks out an identity morphism for every object « € Xy, that is, 1, = so(z) € X3
for all x € Xy. The face maps di,dp: X1 — X assign domain and codomain to
arrows f € X, that is, domf = dy(f) and codf := do(f). To then obtain hX,
we consider the free graph on X generated by the arrows X; and then impose the
relation h = gf if there exists a 2-simplex o € X5 such that doo = f,dpoc = g and
dio = h. Representing this graphically we obtain

Composition in hX is then associative (it is a free graph after all). Unitality is
established as follows: For f € X; we have to verify that there are 2-simplices
0,0’ € X5 so that

codf
f 1codf
{
dom f f codf
)
Ldomy (‘r‘ f
dom f

Verifying this e.g. for the upper triangle goes as follows: Define o := s1(f). Then
dos1(f) = Xag(f) = f and d1s1(f) = Xaqi(f) = f since s'd' = s'd? = id. In
particular,

This shows that hX is indeed a category. For morphisms X — Y in sSet we realize
that naturality gives rise to a functor hX — hY and this is functorial. It remains
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to verify that b is a left adjoint for 91. However, we really only have to verify this
for representable simplicial sets A™, that is, we have to show

Cat(hA™, €) =~ sSet(A", NE)

However, by the Yoneda Lemma the RHS is simply %, ,i.e., the set of chains of
n composable morphisms. Looking at the LHS we immediately realize that HA™
is isomorphic to the category ¢[n], from which the adjunction follows. Since left
adjoints are unique up to natural isomorphism, this verifies that both constructions
for h agree up to isomorphism.

Example 2.32. We construct a functor sd: A — sSet. In order to do so, we need
some preliminary notions:

e Let Poset([n]) denote the poset of nonempty subsets of the ordinal [n],
ordered by inclusion.
e For a morphism f: [n] — [m] in A we get a poset map
fx: Poset([n]) — Poset(A™), fo(M) = f(M)
e This defines the poset functor Poset: A — Poset, where Poset denotes
the category of posets.
By means of the poset functor and the nerve functor 91 from Example 2.31 we may
define sd by
sd :== 9o Poset: A — sSet, sd(A™),, = Cat([m], Poset([n]))

Applying the functor sd to A! and A? and looking at the respective 1-simplices
yields the following picture:

sd(A1)y {0} {0,1} {1}

{1

PN

sd(A?%), {0,1} {1,2}

~ L

{0,1,2}

{0}/ ! \{2}

{0,2}

From the preceding two diagrams it is not very surprising that the geometric re-
alization |sdA™| is exactly the barycentric subdivision of |A™|. Having defined the
functor sd, we may consider the corresponding nerve functor

Ex := q: sSet — sSet, X — sSet(sd, X)

By Theorem 2.28 we get a left adjoint to Ex, the unique cocontinuous extension
sd: sSet — sSet given by

[n]eA
sdX = J X,, ®sdA"

Example 2.33. Theorem 2.28 also proves that sSet is cartesian closed, i.e., for
every simplicial set Y the functor — x Y: sSet — sSet has a right adjoint. This
right adjoint is referred to as the internal hom (this concept will be explained in
section 4.2 in detail). In fact, this is true for all categories of set-valued presheaves
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endowed with the induced cartesian structure. Indeed, fix a simplicial set Y and
let §: A — sSet be the functor

[n] — A" x Y
[ kalf) x 1y

The corresponding nerve to § is then given by Mg = sSet(k A x Y, —). We define
the internal hom as V() := Nz = sSet(& o x Y, —). It may then be checked that
| — |§ = — x Y and therefore, by Theorem 2.28, we obtain the desired adjunction.

Example 2.34. Denote by A, the full subcategory of A with objects [0], ..., [n].

The inclusion functor Ag, < A can be viewed as a functor sk, : Agyn — sSet by
means of the Yoneda Lemma, and this functor induces the truncation functor

AP
try, : sSet — sSetg,, = Set™<n»
X — sSet(sky, X) =~ X o4

By Theorem 2.28 tr, has a left adjoint sk, : sSet¢,, — sSet, called the n-skeleton,
given on objects X € sSetg,, by

[k]EA<n

<

sk, X = J X ©sky[k]

We may even extend the domain of sk, further by precomposing with tr,,:
sk,, := sk,, o tr,,: sSet — sSet

Example 2.35. Recall that a groupoid is a category for which all hom-sets only
contain isomorphisms. The category of groupoids Grpd is the full subcategory in
Cat which has as objects the collection of groupoids. It can be shown that Grpd is
cocomplete. Therefore one may apply Theorem 2.28 to the functor «>: A — Grpd
which takes [n] and maps it to the groupoid n~ = {0 = 1 = ... = n}. The
fundamental groupoid functor h<: sSet — Grpd is then defined as the realization
| — | obtained by means of Theorem 2.28. More concretely, for all simplicial sets
X we have
[n]lea

hoX = J X, On®

An explicit construction is analogous to the one given in Example 2.31 with the
sole difference of adding all the necessary inverses. If X is a topological space and
x € X is a point, then we may first consider the total singular complex II¢, X =
Top(| — |, X) € sSet. Applying the fundamental groupoid functor h yields a
groupoid h*<*(Il¢, X)) whose objects are given by the points in X. Thus we may
consider the hom-set

T (X, ) == h7 (g X)(x, x)
which exactly recovers the fundamental group of a topological space X at the point
re X.

2.4. Homotopy Theory. The following is based on [28].

When we think of homotopy theory, we think of topological spaces and contin-
uous maps between these, along with the essential ingredient of the unit interval
I =[0,1]. In fact, recalling the definitions, if f and g are continuous maps with the
same domain and codomain (morphisms in the category Top), then a homotopy
between f and g is a continuous map

h:[0,1] x domf — codf
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such that hl{oyxdoms = f and Al{1}xdoms = g- A continuous map f is then said to
be a homotopy equivalence, if f has an inverse up to homotopy, i.e., there is some
composable morphism f’ such that fo f’ and f’o f are homotopic to the respective
identities. The category of topological spaces is not the only category that gives
rise to a homotopy theory, as the name of this section might have already implied.
In this scheme of things, the role played by the standard 1-simplex A' in sSet will
be analogous to the role played by the interval [0,1] =~ |A| in Top (concerning the
definition of homotopies).

Definition 2.36. Let f, g be morphisms in sSet with the same domain and codomain.
e A simplicial homotopy between f and ¢ is a simplicial map h: Al x
domf — codf such that we have a commutative diagram

£a(d") X 1domy £ A (d") X Ldomy

A% x dom f

Al x domf AY x dom f

12

h

e

dom f codf dom f

g f

e A simplicial homotopy equivalence is a simplicial map f for which there
exists a (composable) simplicial map f’ such that f' o f and f o f’ are
homotopic to the respective identities.

Therefore, doing homotopy theory is not something we can exclusively do in the
category of topological spaces, but the intrinsic structure of sSet also allows for
such a theory to be developed. In fact, many categories give rise to certain kinds of
homotopy theories. These special kinds of categories, be it homotopical categories
or model categories etc., will be covered in detail in Chapter 5.

Remark 2.37. Equivalently, a simplicial homotopy between f,g: X — Y is a map
h: X — YA such that

Yi'h=f Y h=g

where Y are induced from the two maps d: [0] — [1] and the definition of the
internal hom

vA = sSet(& x A'Y) e sSet, [n] — sSet(A"™ x A'Y)
See also Example 2.33 and Chapter 4.2 for more details.

Proposition 2.38. The singular complex functor ll¢y: Top — sSet, defined in
Ezxample 2.30, maps continuous homotopies to simplicial homotopies. In particular,
continuous homotopy equivalences are mapped to simplicial homotopy equivalences.

Proof. Let h be a continuous map [0,1] x X — Y. Since II<, is a right adjoint,
it preserves limits and therefore

Moo ([0, 1] x X) = T ([0, 1]) x Mo (X)
We may thus write ¢ (h) as
Moo (h): Heon([0,1]) x Moo (X) — Moo (Y)
Taking the adjunct of the canonical homeomorphism |A!| — [0,1] yields a simpli-
cial map £: A' — Tl<([0,1]). By precomposing with & x I (x) We obtain a
simplicial map
Al x Mg (X) — Heon(Y)

which is the desired simplicial homotopy. U
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2.4.1. Kan Complexes. Recall the definition of the i-th horn A} of the standard
n-simplex from Example 2.9.

Definition 2.39. A simplicial set X € sSet is called a Kan complex if it satisfies
the following horn filling conditions: For all 0 < i < n,n > 0, every map

AL x
can be extended (this may be non-unique) to a commutative diagram

A?LX
1

-
-
-
L7 o~
-
-

An
Remark 2.40. Equivalently, the above horn filling conditions boil down to the state-
ment that the corresponding inclusion maps A}’ < A" induce surjections
sSet(A™, X) — sSet (A}, X)
For later use we shall also define the more general notion of a Kan fibration:

Definition 2.41. A simplicial map f € sSet is said to be a Kan fibration, if it has
the right lifting property with respect to all horn inclusions, i.e., foreach 1 < k < n
the diagram

A} ——— domf

A" ——  codf
allows for a lift d: A™ — domf.

Remark 2.42. The notion of a Kan fibration is more general than that of a Kan
complex. Indeed, X is a Kan complex if and only if the unique map X — Al is a
Kan fibration.

It turns out that any topological space may be viewed as a Kan complex. More
precisely:

Theorem 2.43. The simplicial set ll<(Y) is a Kan complex for all'Y € Top.

Proof. Fix 0 < ¢ < n and consider the inclusion

< T
Az A
T

which admits a retract r: |[A"| — |A?], i.e., roi = idjpn|. Explicitly, a retract
r: |A"| — |A?| may be given by

T’(to,...,tn) = (to —cC.. -7ti—1 7C7ti +nc,ti+1 76,...,tn 76)
where ¢ := min(¢o,...,t,) and |[A?| is given by
{(to,...,tn) | t; = 0 for some j # z} c |A"
Using the adjunction | — | - II¢y, the extension problem

A L e X

An
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is then equivalent to the extension problem

Ay = x

|A"|
But this problem is solved by putting the dashed arrow to be |f|or. O

Remark 2.44. Theorem 2.43 tells us that any topological space can be seen as a Kan
complex. Analogously, any Kan complex gives rise to a topological space (which
is simply given by taking the geometric realization). The adjunction | — | 4 <y,
will then give rise to some sort of homotopical equivalence (Quillen equivalence).
Details for this will be given in Chapter 5.

Homotopy groups (of any order) of a topological space are of course incredibly
important in the study of homotopy theory for topological spaces. In the case of
Kan complexes such homotopy groups also make sense. Indeed, we roughly sketch
how such homotopy groups are defined: Let X be a Kan complex and pick a vertex
v € Xo. The 0-th simplicial homotopy group mpX of X is defined to be the set of
homotopy classes of vertices of X, i.e.,

moX = {[x] | z e XO}
where [z] denotes the set
{x’eX0|x’~m}

with ~ being the smallest equivalence relation on X such that x ~ y if there exists
f € X1 such that di(f) = x and do(f) = y. In other words, moX is the coequalizer

of
dy
_—
X, Xo
_
do

For n > 1, one defines 7, (X, v) to be the set of homotopy classes of maps a: A™ —
X relative boundary dA™. In other words, 7, (X, v) is the set of equivalence classes
[@]ve1 where a: A™ — X is a simplicial map such that

OA" —— A°

commutes, and where [a]yel = [B]rel if and only if there exists a homotopy h: Al x
A™ — X between a and S8 which respects the boundary condition:

Al x OA" —— A

Ale"ﬁX

Finally, one verifies that for n > 1 the sets m, (X, z) can be endowed with a group
structure which is induced by the horn filling property of Kan complexes (see [26]
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or [15] for example). In fact, one can then also prove that we have a bijective
correspondence of sets

moX = mo| X|
and, for all n > 1, group isomorphisms
(X, v) = 7, (| X, v)
i.e., the simplicial homotopy groups agree with the (topological) homotopy groups
of the associated topological space obtained by applying geometric realization to

X.
In analogy to topological spaces, we have the following definition:

Definition 2.45. Let f: X — Y be a simplicial map of Kan complexes. Then f
is called a simplicial weak equivalence if f induces group isomorphisms

f*
(X, z) (Y, f())
for all n > 1 and vertices x € Xj, and a bijection of sets
WQ(X,LL') i Wo(Yaf($)>

Theorem 2.46 (Whitehead V1). Let f: X — Y be a simplicial map between Kan
complexes. Then f is a simplicial weak equivalence if and only if f is a simplicial
homotopy equivalence.

Proof. See [28] Exercise 39.11. O

Theorem 2.47 (Whitehead V2). Let f: X — Y be simplicial map between Kan
complexes. Then f is a simplicial homotopy equivalence if and only if all commu-
tative squares

A" —— X
7

A" — Y
admit o lift d: A™ — X such that the upper triangle commutes and the lower

triangle commutes up to a homotopy relative boundary, i.e., there exists a homotopy
h: Al x A™ Y from f od to the bottom map so that h|a1xoan factors as

o0A™
ToAm

A
Al x 0A™" ———— 5 Y
h'AlxDA"

where moan denotes the corresponding projection.
Proof. See [28] Proposition 39.10. O

Weak equivalences can also be understood by means of a specific functor. In order
to define this functor, we need some preliminary notions. We start off by defining
the last vertex map: Recall, from Example 2.32, the functor Poset: A — Poset
which takes [n] and maps it onto the poset of the ordinal [n] denoted by Poset([n]).
Also, recall that any ordinal [n] can be interpreted as a category itself. The map
max: Poset([n]) — [n] is given by

[UO,...,Uk] = Vg
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where [vg,...,v;] € Poset([n]) is an ordered tuple with v; < v;y; for all j. The
last vertexr map Aan: sdA™ — A™ is then defined as 9tmax. This map then gives
rise to a simplicial map X — ExX for any simplicial set X (Ex was introduced in
Example 2.32). Indeed, fix X € sSet. For any n-simplex o: A™ — X let px(0)
denote the composite
NPoset([n]) = sdA” e, N[n] = A" —2— X

The map o — px (o) then yields a natural transformation X — ExX, where
naturality follows from commutativity of

max

Poset([n]) ————— [n]
fx !

Poset(A™) ——— [m]

max

The simplicial maps px then assemble into a natural transformation idsgey — Ex,

i.e., the diagram

domf — 2ol Ex(domf)

f Exf

codf ——F—— Ex(codf)
commutes for all morphisms f in sSet.
Definition 2.48. The functor

Ex®: sSet —> sSet

which sends X € sSet to the colimit of the diagram
X — 2 5 BExX — 22X, ExPx X, By

is referred to as Kan’s Ex®-functor. The universal cocone that comes associated
with the colimit Ex™ X then gives rise to a map p%: X — Ex®X. The construction
X — p% determines a natural transformation lggey — Ex®.

The following theorem is of substantial importance to us:

Theorem 2.49. A simplicial map f between Kan complexes is a simplicial weak
equivalence if and only if Ex™ f is a simplicial homotopy equivalence.

Proof. See [26] Corollary 3.3.6.8. O
This motivates the following definition:

Definition 2.50. A simplicial map f (not necessarily between Kan complexes) is
called a simplicial weak equivalence if and only if Ex™ f is a simplicial homotopy
equivalence.

Theorem 2.51. The functor Ex®: sSet — sSet and the natural transformation
PP 1gget — Ex™ enjoy the following properties:
o For every simplicial set X € sSet, the object Ex*X is a Kan complex.
e For every simplicial set X € sSet, the map p%: X — Ex*X is a weak
homotopy equivalence.
o The functor Ex® preserves weak equivalences, (trivial) fibrations, (trivial)
cofibrations, and simplicial homotopy equivalences.
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e For every Kan fibration of simplicial sets f € sSet, the induced morphism
Ex®: Ex®(domf) — Ex®(codf) is a Kan fibration.
o The functor Ex™: sSet — sSet commutes with finite limits.

Proof. For details see [26] or [28]. O



38

3. INTERLUDE ON KAN EXTENSIONS

The Road goes ever on and on
Down from the door where it
began. Now far ahead the Road
has gone, And I must follow, if I
can, Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands
meet.

J.R.R. Tolkien (The Fellowship of
the Ring)

This chapter is based on the corresponding chapters in [23],[34] and [35].

3.1. What even is a Kan Extension? Let us assume we have a diagram of
functors

% § &
X
)

and let us view a category as the mathematical embodiment of a mathematical
theory itself. A functor is then viewed as a translation of one mathematical theory
to the language of another mathematical theory. Put differently, the functors §
and  both model the mathematical theories € inside & and 9, respectively. Now
the question is, if it is possible to model all of the theory & inside & by using the
information of § and 4l in such a way so as to construct a functor that nicely blends
in with all the data given? More concretely, we search for a functor & — & that
should deserve to be called extension of § along 4. There are two canonical ways to
define such a notion: The existence of such an extension functor €: & — & should
either arrange for a comparison natural transformation €4 — § or a comparison
natural transformation § — €Ll

@ i & %

/
z=asp
\
AY

\

\

\

\

\
\
\
\
\
v
/

S)
@ <zzzz= |

This motivates the following:

Definition 3.1. Let §: € — &,4: € — D be functors between given categories.

e A left Kan extension of § along 4 is a functor Langg: @ — & together
with a natural transformation ¢: § — (Lany§)4 which collect into a uni-
versal pair (Langg, ¢) for diagrams of the form

@ S &

Universality here means that for any other such pair
(£: D&, ~v:F— LY
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~ factors uniquely through (: There exists a unique £: Lang§ — £ such
that
5 a L4

g
\ ////”’gu

(Lanug)il

commutes.

o A right Kan extension of § along 4 is a functor Rang§: 2 — & together
with a natural transformation e: (Rangy§)4U — § which collect into a uni-
versal pair (Rany§,e) for diagrams of the form

@ S &

Universality here means that for any other such pair
(£:9-8,0: U —F)

¢ factors uniquely through e: There exists a unique £: £ — Rangy§ such

that
24 - d 3
\5\11\\\\) /

(Lang§)u

commutes.

Passing to a higher set-theoretical universe SET, we can think of a left Kan

extension of §: € — & along U: € — D as a representation for the functor
&6(F,U%): &2 - SET, £~ &%(F, L4)
where U*: &7 — &% denotes the precomposition functor — o {{. By the Yoneda
Lemma any pair
(2: D&, ve€(F, 1) ~ Hom(E2 (L, ), %g(g,u*))
as in the definition above, defines a natural transformation
%9('87 _) > %%(g7u*)
The universal property satisfied by the left Kan extension (Langg, ¢) is then equiv-
alent to the associated map
&7 (LanyF, —) — &% (5, 4%)

being a natural isomorphism, i.e., (Lanyg, () represents the functor & (g, U*).
Proposition 3.2 ([35]). If, for fited U: € — D and &, the left and right Kan
extensions of any functor §: € — & along U exist, then these define left and right

adjoints to the pre-composition functor *: &2 — &%: We have an adjoint corre-

spondence
Lang

e T g
\i/

Rang

and natural isomorphisms:
&7 (Lanyg, £) = €% (§, £4), & (L, F) = &7 (L, Rany§)
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3.2. Pointwise and Absolute Kan Extensions. The questions that should pop
into one’s mind right now are the following:
e Where do Kan extensions pop up in our quest to understand quantum
field theory?
e How do we know certain Kan extensions will exist, and are there concrete
formulas for these?
Since (higher) category theory is the language we use in order to describe quantum
field theory, the first question is self-evident as essentially any notion in category
theory may be seen to be a Kan extension. The second question also has an
immediate answer (Proposition 3.5). First let us do some preparatory work and
give some definitions:

Definition 3.3. Let
2% S5
be a pair of functors.

e A left Kan extension Lany§ along i of § is pointwise if it is preserved by
all representable functors &(—,e) for all e € &:

F &(—.,e F &(—,e
& 3 & 25 et & —5 & 2 et
o 2 L >
1 / .’ P
[/ s e
/i/ // //// e
)10 oy = S / e
J/ Lany§ 4 -7 Lang&(F,e)
",/// //// -
// L{:/z
D D

In other words, if (Lang§, ¢: § — (Lang§)F) is a left Kan extension, then
(%(Lanu& 6), %(C’ 6))

is the left Kan extension of &(F,e) along $l.
e A right Kan extension Ranyg along 4 of § is pointwise if it is preserved
by all representable functors & (e, —) for all e € &:

5 & (e, &(e,—
%%%*;Set %L%*;Set
A 7 ~
1 / 7 e
1’7 / 7 7
0 « 7 .
1 = / e
7//// Rany§ ///// ,’/ Ran‘_[g(&e)
.
i/ A
1,7
D D
In other words, if (RanygF, ¢: (RangF)F — ) is a right Kan extension,

then
(g<ev Raﬂu@)v g<ev C))
is the right Kan extension of &(e, §) along 4 for all e € &.
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e A left/right Kan extension is said to be absolute if it is preserved by any
functor £: & — O out of the codomain of §:

§ £ 3§ £
€ — & —— 0 € — & —— 0
/,’ A ‘7 P
1 ,/ ¥4 e
/7 J Ve 7
I I/// / — s V4 s
J /) Lang§ S 27 Lang(£F)
v/ e
7 50
§ £ § £
€ — & —— 0 € — & —— 0
A >
I/// /7\ //7‘ < .
1 / //,/ ///
5 ///I / _ I //// i
= y .
i/ Rany§ ////' -7 Rany (£F)
/I//// //////’
.

Following the notation of [35], the category d | { for a functor {: € — P and
d € O is defined to be the category of elements of the functor 2(d, 1), that is,

d | = el(D(d,))

We recall that objects in this category are given by pairs (c € €, f € D(d,Lc)) and
a morphism

o~
(¢, f) = (&)
boils down to a morphism h: ¢ — ¢ such that

e My gz

f

7
d

commutes (see also Remark 2.11).

Lemma 3.4. Given functors§: € — & and i: € — D with D and & locally small
and an object d € D, there is a natural isomorphism

Cone(e, §T14;5) = Set®(D(d, U), & (e, F))
where Ilg)5: d | 34 — € is the associated forgetful functor.

Proof. The set of cones Cone(e, §Ilq;y) is equivalently given as the set of natural
transformations from the constant diagram functor on e to F1l4y:

Cone(e, §1yy5) = €4 (const(e), Fay5)
Any such cone is a family ((§: D(d, Uc) — &(e,Fe)) (., r) such that

Sle e

%
=

'Y
cg\l \%m
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that is, if the LHS-triangle commutes then so does the RHS-triangle. However,
this determines a natural family of functions (¢: P(d,Llc) — &(e, Fc) so that for
all h: ¢ — ¢ we have a commutative diagram

2(d, se) SN & (e, 5c)

(uh)*l l(%h)*

D(d.40) — &(e.5?)

Proposition 3.5. Consider a pair of functors

g8 g 3¢

such that 2 and & are locally small.
(i) A right Kan extension of §: € — & along $h: € — D is pointwise if and
only if it can be computed by
Ranug(d) = gfﬂ SHdw

in which case, in particular, this limit exists.
(i) A left Kan extension of §: € — & along : € — D is pointwise if and
only if it can be computed by

Lang§(d) = C(Qllli;n §1lyq

in which case, in particular, this colimit exists.
(#ii) If Rany§ resp. LanyF is pointwise and & is cotensored resp. tensored
over Set, then we have natural isomorphisms (natural in § and $):

ceE®
Lang§ = J 5 (Ue) © Fe, Rany§ =~ J X (Ue) h Fe
CcE®

where 3.: D°P — Set? and X : D — Set? denote the contravariant and
covariant Yoneda embedding, respectively.

Proof. If Rany§ may be written by the above limit formula, then it is pointwise by
preservation of limits of the hom-functor (in the covariant argument). Conversely,
if Rany§ is pointwise, then & (e, RanggF) is the right Kan extension of &(e, §) along
i for all e € &. The Yoneda Lemma combined with the defining universal property
of the Kan extension yield

& (e, RanyF(d)) = Set”(2(d, —), & (e, RanyF)) = Set? (2(d, 1), &(e, F))
=~ Cone(e, §1L44)

where the last isomorphism follows from Lemma 3.4. This proves the first state-
ment. In order for

J P(d, Uc) h Fe

ce®
to exist so that the end-formula for Rang§ makes sense, we have to verify that the
wedge functor induced by Z(d, i) M §, defined in equation (2), is represented by
RangF(d). This, however, means that we only need to prove that the right Kan
extension & (e, Rang§(d)) is given by

{Wedges * S>P(d, ) M %(6,3)} ~ Set (*, f & (e, D(d,se) S’C))

ce®
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lle

J- & (e, 2(d, the) h Fe)
CcEC

f Set(D(d, Uc), & (e, Fc))
CceE®

Set® (D(d, 41), & (e, T))

lle

lle

The remaining claims follow by duality.
O

Remark 3.6. If we already know that the (co)end-formulas for left resp. right Kan
extensions make sense, we may immediately calculate that the formulas above hold
true: For example, if & is cocomplete, let £ € &2 be any test functor. Then we
have the following chain of natural isomorphisms (natural in § and 4[):

ce® ce®

%9’( f 3 (816) O Fe, 2) ~ f %( f D(sle, d) O Fe, 2d>

de9

N f f%(g(uc,d)@gc, 2d)

deD ce®

= J fset(@(uc, d), (e, £d))

deD ce¥

f f Set(D (e, d), &(Fc, £d))
CcEC deD

~ J Set? (3. (8he), &(Fe, £))

CcE®

f % (e, (£40)c)

ceEG
=~ &9(F, U L)

lle

12

lle

Example 3.7. Let us consider the unique functor
¢ ——
where * denotes the terminal category. If the category & allows for the existence
of the left adjoint Lan, - I*: &% — &* ~ & (e.g. & is cocomplete), then we get
isomorphisms
& (T, ) = & (LanyF, Y)

where a functor {: x — & may be identified with just an object e € &, and the
composition 4! is then nothing else than the constant diagram functor const(e) at
e. Therefore, the left Kan extension Lan; satisfies

&% (F, const(e)) = &(LanF, €)
which proves co%gim = Lan,. Analogously, if & is complete, we obtain lién = Ranj.
The full adjunction

colim=Lan,
y — L T

lim=Ran,

will be quite important to us in later chapters.
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Example 3.8. Recall Theorem 2.28: Let & be cocomplete. For a functor §: € —
2 we asked the question when there will exist a left adjoint for the nerve 9tz of §.
The left Kan extension of § along the Yoneda embedding J: € — Set®” will then
give rise to the realization functor | — |5:

s
€ €
i A
1 //
i L
& i |-lg=Lan,§
Y //
op
Set?

Indeed, by Proposition 3.5 we have
CEC

ceE®
Lan, §(0) = J Setgop(cl:qil)@Sc; J e ® Fe

for any i € Set®””. This exactly retrieves the formula from Theorem 2.28. There-
fore,

Lan, §: Set®” 1 €: Ng

Corollary 3.9 (Density). For any small category €, the identity functor defines
the left Kan extension of the Yoneda embedding X : € — Set®”” along itself:

G Set®”
P

-
-
-
-
-

e Lan, k1

-
-
-

Set®”

In particular,
Lan & () = colim (elS nets Setgop) ~F

Proof. We immediately see from the respective coend formula that Lan , & =~ 1:

CcE®
Lan, & (3) = f Set®” (£, 5) © ke
CcEC

J Fc® Le

0

lle

Therefore,

Set®” (Lan; X (3),4) = [ 8et®” (Fe® ey
> [ Set(Fe, Set®” (ke )

=~ f Set(§c, Lc)

~ Set®” (F,4)
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for all & € Set®”, which proves Lan + £(&) = §. The remainder follows from
el§ ~ X | § and the formula

colim (J: I & Des Set%op) ~F
which is implied by Proposition 3.5. U

The nerve realization Theorem 2.28 can also be understood in terms of Kan
extensions, as we have seen in one of the previous examples. This begs the question
whether or not any adjunction may be understood by means of Kan extensions.
The answer is yes again:

Theorem 3.10. Let §: € — D be a functor.

o The functor § has a right adjoint if and only if Langle exists and is
preserved by §. In particular, Langle is an absolute Kan extension.

o The functor § has a left adjoint if and only if Rangle exists and is pre-
served by §. In particular, Rangle is an absolute Kan extension.

Proof. Suppose first that § has a right adjoint &: & — €. Then we obtain an
adjunction

o

€7 T €*

=
This follows since if n: 1¢ — UF and €: U — 1g are unit and counit, respectively,
then n*: 1ge — F*U* and €*: U*F* — lgo give rise to adjunction unit and counit
for $1* - §*. Now by uniqueness of adjoints, Lang =~ ${*. However, this implies that
1 defines a left Kan extension of 1¢ along 4. For any other functor K: € — & we
have

&% (KLangH,L) ~ &% (K, U4*H, L)
= &%(UW(KH), L)
~ &?(KH,§L)

forall H: 2 — % and all L: ¥ — &. This shows that KLangH =~ Lang(KH)
and therefore Langleg is absolute. Conversely, assume that the left Kan extension
(Langlg,n) exists and is preserved by §. Using the universal property of the Kan
extension §Langle = Lang§ we obtain a unique factorization

¢ —35 9 %#9

In other words, we have a commutative diagram

S~ A

(Lang®¥)F

proving one of the triangle identities. For the other identity, see [35]. O
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4. HOM-OBJECTS AND ENRICHED CATEGORY THEORY

My mind rebels at stagnation.
Give me problems, give me work,
give me the most abstruse
cryptogram, or the most intricate
analysis, and I am in my own
proper atmosphere. But I abhor
the dull routine of existence. I
crave for mental exaltation.

"The Sign of the Four" - Sir
Arthur Conan Doyle

Enriched category theory is a powerful generalization of traditional category
theory that allows us to work with categories enriched over other mathematical
structures, such as sets, vector spaces, or topological spaces. In traditional cate-
gory theory, a category comes with a set of morphisms for each pair of objects, but
in enriched category theory, these Hom-sets are replaced with objects from a nice
mathematical category (a cosmos). For example, a category enriched over topo-
logical spaces would have topological spaces of morphisms for each pair of objects.
The notion of enriched category allows us to study the structure of categories in a
more fine-grained way.

4.1. Review on Symmetric Monoidal Categories.
Definition 4.1. A symmetric monoidal category is a category € equipped with

the following data:

e A functor ®: € x € — ¥, referred to as the tensor product.

e An object 1 € €, called the unit object.

e Four natural isomorphisms
a: ®o(®x 1lg) > ®o (lg x ®)
AMI®— — 1g
p: —®1 - 1g
B:® > QorT

where 7: € x € — € x € is the twist functor, which takes a pair of objects

(¢,d) to (¢, c¢). The above isomorphisms are referred to as associator, left
unitor, right unitor and braiding in that order.

These are subject to coherence conditions, which demand that the following dia-
grams be commutative:

e Pentagon axiom:
(a®b)® (c®d)
Aa®b,c,d Qa,b,c®d

(e®b)®c)®d a® (O (c®d))

aa,b,c®1d 1a®0‘b,c,d

(a®(b®c))®d a® ((b®c)®d)

Qg b®c,d
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o Triangle identity:
(a®1)

Xa,1,b

®(1eY)

(a®b)®c EILLNN a® (b®c) % b®c)®a

e Hexagon identity:

ﬂa,b@lc Qp,c,a

b®a)®c e b® (a®c) W b® (c®a)

e The symmetry condition:
Bb,aBab = lagb

Example 4.2. (Symmetric) monoidal categories are abundant. We list some of
the most popular examples:

e Let € be any category, then the category of endomorphisms Endg = €%
on forms a monoidal category with the tensor product being composition
of functors.

e The category Set is a symmetric monoidal category with the tensor prod-
uct being the product functor x.

e The category of K-vector spaces Vectk yields a symmetric monoidal cat-
egory with the tensor product being given by the usual tensor product of
vector spaces.

e Consider the poset of non-negative real numbers [0, 0) — R. Viewing this
poset as a category by means of (¢ > b) <= (Ja — b), we may define
the associated tensor product to be addition of real numbers. This results
in a symmetric monoidal category ([0, ), +,0) with tensor unit being 0.

Definition 4.3. a symmetric monoidal functor between symmetric monoidal cat-
egories (€,®, 1, A, p,8) and (€',&', 1, X, p’, ') consists of
e a functor §: € — €',
e a natural isomorphism ¢: ® o(F x §) > Fo®,
e an isomorphism ¢;: 1’ — F1,
such that the diagrams
Pa®b,c

Fa®b) ® Fe ——————— F((a®b) ®c)

@a,b®/1ScT J{Sa

(Fa @ Fb) @ Fe Fa® (b®c))

ozl T‘Pn,,h@c

Fa & (3‘77@/ SC) m Fa & 3(b®0)

’ ’

A
1'® Fa —=— Fa Fa® 1’ e Sa

@1®1Sal l&)\a 1ga®¢1l lgpa

31®/SGW3(1®G) Fa® §1 Tg(a(@l)
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Fa® F — L 3 Fa

Pa,b ®b,a

Sa@b) —5 - 3b®a)

commute for all a,b,c€ €.

Definition 4.4. Let (F,p,p1) and (4,,11) be symmetric monoidal functors
€ — 2. A natural transformation (: § — U is called a symmetric monoidal
transformation if the diagrams

§a®o Fb —E2% 5 (4@ sb

Pa,b Va,b / \

F(a ®g b) T (a ®¢ b) Sle —> Hlg

commute for all a,b e €.

4.1.1. Duals.

Definition 4.5. Let € be a symmetric monoidal category.

e An object ¢ € € is said to have a dual if there exists an object ¢! € € such
that we have an adjunction

—®c
€ 1 €
*@cT

e & is said to have duals, if every object ¢ € € has a dual.

We realize that an adjunction — ® ¢ 4 — ® ¢! as above induces corresponding
unit and counit maps

n:lqg—>cT®c®—, €ZCT®C®——>1g
However, these natural transformations are already fully determined by the respec-

tive components 1; and 7. Indeed, 1 and ¢, being the corresponding unit and
counit of an adjunction, satisfy the triangle axioms:

c®f&>c®§®c®f CT®7C—®7I>CT®C®CT®*
e®c 5®cT
c®— cf ® —
In particular, we obtain commutative diagrams
C%C@CTG@C CT%C’Q@C@CT
e1®c €1®CT
c ct

where we have made extensive use of the natural isomorphism — ® 1 =~ 1¢. From
such commutative diagrams for n; and €3 as above, we may recover n and € by
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defining
Ne =M @ 1y, o =e1® 1o

Example 4.6. Consider the symmetric monoidal category of K-vector spaces Vecty.
It may be shown that a vector space V € Vectk is dualizable if and only if V is
finite dimensional. Let us show one direction of this equivalence. Suppose V is
finite dimensional and set VT := Vectx (V, K). Recall that the tensor unit of Vectx
is K itself and therefore it suffices to construct appropriate linear maps

mw:K->VieVv, & VigVv-K
The definition for ex is canonical. For ¢ € VT and v € V, we set
ex (Y ®v) =¥ (v)

and extend this map linearly to all of VT ® V. For the definition of 7, we fix a
(finite) basis {v;}%_, for V and define

nx(1) = ZUZT Qv

where the {v]} denotes the corresponding dual basis. It may be shown that the
definition of 7k is independent of the specific choice of a basis. Moreover, it is not
hard to see that the two maps thus defined satisfy the triangle identities, which
shows that the full symmetric monoidal sub-category of finite dimensionsal vector
spaces vectg has all duals.

Example 4.7. Consider the symmetric monoidal category Set which has the prod-
uct as its tensor product. Note that except for the singleton x € Set, no other object
S € Set (which has cardinality greater than 1) has a dual. Indeed, suppose S € Set
with |S| > 1, has a dual ST, then

Set(A x S, B) = Set(A, B x ST)
In particular, for A = * a singleton, we would obtain
Set(S, B) = Set(x,B x ST) =~ B x ST
for all B € Set, which is impossible unless S = ST = «.

4.2. Internal Homs. This chapter is based on [38] and the corresponding Nlab-
article on internal homs.

As a motivating example let us, just briefly so, consider the category Set. For
X,Y, Z € Set we readily have the canonical natural isomorphism

Set(X x Y, Z) > Set(X, Set(Y, Z))
which maps a function f: X x Y — Z to the induced function ]?: X — Set(Y, 2)

which is given by f(;z:) == f(xz,—). We note then that the category of sets is special
in that for each Y € Set the functor — x Y has a right adjoint Set(Y, —). To spell
out a triviality concretely: One of the most unique properties of Set is that for any
X,Y € Set the Hom-set Set(X,Y") is again an object in Set. This is something we
would also like to have in an arbitrary category &, i.e., we aspire to get, for each
pair X,Y € €, a hom-object [X,Y] € € (rather than just a set) which should, in
some sense, contain the same information as the usual Hom-set €(X,Y’) with the
distinction of being even richer in that it is also an object in the category itself.


https://ncatlab.org/nlab/show/internal+hom

Definition 4.8. Let € be a symmetric monoidal category. An internal hom in €
is a functor

[—,—]: €PxE€—>F

such that for every object ¢ € € we have a pair of adjoint functors

€ L €

‘\_/

[C,—]
If an internal hom exists in €, we call € a closed symmetric monoidal category.

Remark 4.9. We note that the concept of an internal hom generalizes the notion of
a dual.

Proposition 4.10. In a closed symmetric monoidal category € there are natural
isomorphisms

la,[b,c]] = [a®b, ]
Proof. Let x € € be any object. We have the following chain of natural isomor-
phisms
E(x,[a®b,c]) 2B (z® (a®b),c) 2 EC((x®a)®b,c)
~F(x®a,lbc]) = E(x,[a,[bc]])
Since x was arbitrary the claim follows from fully faithfulness of the Yoneda em-
bedding. O

Proposition 4.11. Let € be a closed symmetric monoidal category with internal
hom-bifunctor [—, —]. Then this bifunctor preserves limits in the second variable,
and sends colimits in the first variable to limits:

L j] = lim|[c, §j], Li j,c] = li B
[, 1im §5] = lime, §j] [colim §j, ¢] = lim[§j, ]
for any (small) functor §: F — € and any object ce €.

Proof. Since [¢, —] is a right adjoint we immediately obtain preservation of limits in
the covariant slot of [—, —]. For the other case, let §: # — € be a small diagram,
and let a € € be fixed. Then we have the following chain of natural isomorphisms

% (a, [co}m&j,c]) > %(a@co{?mﬁj, c) = %(co?m(a@%j),c) > 1i}n‘i€(a®3j, ¢)

where we also made use of the fact that a ® — is a left adjoint and thus preserves
colimits. (|

Closed symmetric monoidal categories are not all that rare. The main examples
we will concern ourselves with are those induced by cartesian closed categories:

Definition 4.12. A category € is cartesian closed if

e it has finite products (this also implies the existence of a terminal object).
e for each c € €, the product-functor ¢ x —: € — € admits a right adjoint
[c,—]: € — G:

[Cvi]
For ¢, ¢’ € € the resulting object [c, ¢'] will be referred to as the internal
hom (or exponential) from c to .
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Remark 4.13. Any cartesian closed category € induces a closed symmetric monoidal
category: The tensor product is simply defined to be the product bifunctor — x —.
The unit object is given by the terminal object x € €. Associators, left and right
unitors and the braiding are induced by the obvious natural isomorphisms.

Example 4.14. Let us list some examples of cartesian closed categories (and
thereby also of closed symmetric monoidal categories):

e Set is cartesian closed with internal hom [X, Y] := Set(X,Y).

e The category of small categories Cat is cartesian closed: For o, % € Cat
the internal hom [of, B] := B is simply defined to be the corresponding
functor category. The associated natural isomorphisms read

Cat(of,%%) =~ Cat(f x B, %) =~ Cat(RB,67)

e For any small category €, the category @ = Set®” is cartesian closed.
Indeed, for §,4 € €, the value of [§, 4] at ¢ € € must be defined by

[3,4](c) = B(Xge, [3,4]) = G(F x K, 1)
e In particular, the category sSet := Set®” is cartesian closed with internal
hom
sSet 3 [X, Y] :== sSet(X x Xa,Y)
for X, Y € sSet.

Definition 4.15. For € a closed symmetric monoidal category, the underlying set
functor is the functor

(=)o=%¢(1,—): € — Set
represented by the unit object 1 € €.

Remark 4.16. Since (—)o is given as a covariant representable functor, this functor
preserves limits.

Lemma 4.17. For any pair of objects ¢, € € in a closed symmetric monoidal
category, the underlying set of the internal hom [c, ] is €(c, ), i.e.:
[e,c]o = €(c, )
Proof. By definition
[c,d]o =€(1,[c,d]) 2B(1®c, ) =~B(c,c)
where the last isomorphism follows from 1 ® ¢ =~ c. O

4.3. Enriched Category Theory. For the following section we will follow the
exposition given in the appendix of [38].

Throughout, we shall fix a complete and cocomplete closed symmetric monoidal
category (7',®, 1) to serve as the base for enrichment.

Definition 4.18. A 7 -enriched category or 7 -category € is given by
e a collection of objects
e for each pair of objects x,y € € an hom-object €(z,y) € 7
e for each x € € a specified identity element encoded by a map 1,: 1 —
€ (x,x), and for each x,y, 2 € € a specified composition map o: € (y, 2) ®



C(x,y) = G(r,2z) € 7 satisfying the associativity and unit conditions
which demand that the following two squares should commute:

C(y,2) ®C(r,y) ® C(w,x) . oed C(r,2) ® C(w,x)

id®o o
Gy, 2) @ E(w,y) . G (w,2)
©(z,y) o1 G (z,y) ® €z, )
1,®id o
E(y,y) ®E(x,y) 5 € (z,y)

Remark 4.19. It is immediate from the definition that a locally small 1-category
defines a category enriched in Set.

Example 4.20. If € and 9 are 7 -enriched categories, then the corresponding
7 -enriched product category € x 9 has as its set objects pairs (¢, d) for ¢ € € and
deD. For (¢,d) and (¢/,d") two objects as above, the corresponding hom-object is
given by

E(c,d)RD(d,d)
The composition operation is the braiding followed by the tensor product of the
respective composition operations:

(€ x D)((c1,d1), (c2,d2)) ® (€ x D)((c2,d2), (c3,d3))
(€(c1,c2) @ D(d1,d2)) ® (€(c2,c3) ® D(dz,d3))

(%(Cl, CQ) ®%(62,C3)) ® (@(d17d2> ®9(d2, d3))

!
:
|

og®og

l

%(Cl,Cg,) ®@(d1,dd) = (% X 9)((017d1)7 (Cg,dg))

Example 4.21. Let € be a 7 -enriched category. The opposite 7 -enriched cate-
gory €°P has the same objects as €, with hom-objects €°P (¢, ) = €(c,c) and



with composition given by braiding followed by composition in &:

%op(cl’ 62) ® %OP(CQ, 03)

(ca,c1) (€3,¢2)

€ RE
|
!
€ (c3,c2) ® CG(ca,c1)
!
I

@ (c3,c1) = €°P(c1,c3)

Example 4.22. View Ry( as a symmetric monoidal category where the monoidal
product is given by addition of non-negative real numbers (recall z > y < Iz —
y). We note that R is closed, since for a > b € R3¢ the corresponding internal
hom may be given by

[a,b] :=a—beRxg

Hence it makes sense to talk of Ry¢-enriched categories. Suppose X is a Rxg-
enriched category. Then X consists of a set of objects Xy and for each z,y € X
we get a hom-object X (z,y) € R>¢. From the defining conditions of what it means
to be Rx>o-enriched, we obtain the triangle inequality:

X(z,2) + X(w,z) =2 X(w, 2)

In other words, X (—, —) is reminiscient to a metric. In fact, a R o-enriched category
is nothing more than a Lawvere metric space (only the symmetry condition is
missing from a typical metric space). An Rsg-enriched functor (see Definition
4.26) f: X — Y between two Lawvere metric spaces is nothing more than a map
of sets Xg — Y} such that

X(2,y) =2 Y(fz, fy)
This could be considered as a continuous map with respect to the corresponding
induced topologies.

Example 4.23. The category Cat is cartesian closed, hence in particular a symmet-
ric monoidal category. A Cat-enriched category is called a strict 2-category and the
corresponding category of Cat-enriched categories, denoted St-2-Cat, is the category
of strict 2-categories. One notes that St-2-Cat is again cartesian closed, and hence
it makes sense to talk about St-2-Cat-enriched categories, which in turn yields the
notion of a strict 3-category. More generally, a strict n-category is a St-(n —1)-Cat-
enriched category, where St-(n — 1)-Cat is the category of St-(n — 2)-Cat-enriched
categories. We note that the cartesian structure on the category St-(n — 1)Cat is
just taking products of strict (n — 1)-categories, while cartesian closedness follows
from Proposition 4.53 (the corresponding internal Hom is given by the Day internal
Hom).

Any 7 '-category € has an underlying category:

Definition 4.24. If € is a 7'-category, its underlying category €y is the 1-category
with the same collection of objects and with Hom-sets defined by applying the
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underlying set functor (—)g: 7~ — Set to the hom-objects €(z,y) € 7. The
identity arrow 1,: 1 — €(x, ) is already an element of € (z,x)o == 7 (1, € (x, z))
and the composite of two arrows f: 1 — @ (x,y) and g: 1 — €(y, 2) is defined to
be the composition

QL2 BN E(y,2) x €(x,y) —— E(z,2)
Proposition 4.25. A cartesian closed category 7" defines a 7 -category with

e the same objects as 7.

e hom object in 7" from a to b being the internal hom [a,b] € 7.

e the identity map 1,: * — [a,a] and composition map o: [b,c] x [a,b] —
[a, c] defined by taking the transposes of

* X a — a, [b,c]x[a,b]xaimv[b,c]xbﬂ»c
where the evaluation map evqyp: [a,b] x a — b is the (f xa - [a, f])—
adjunct of the identity 1, 41 [a,b] — [a,b].
Proof. See [38] page 398 Lemma A.2.3. O

Definition 4.26. A 7 -enriched functor or 7 -functor §: € — D is given by
e a mapping on objects that carries each x € € to an object §xr € @
o for each pair of objects ,y € €, a morphism §, ,: €(z,y) = D(Fz,Fy) €
7" so that the 7"-functoriality diagrams commute:

(g(yaz) ®Cg({y,y) % %(1’72) 1 % %(1’,1’)
8- ®e .y 8e.s » Fee
g(gyagz)@)@(g'xasy) 4o> 9(%$732) 9(3}1‘73’1’1)

Example 4.27. Let € be a 7'-category and fix an object ¢ € €. The enriched
representable (covariant) ¥ -functor €(c,—): € — 7 is defined on objects by the
assignment € 3 x — €(c, ) € 7" and the assignment

%(67 _)a:,y : (g(x7 y) - [%(67 l‘), (g(ca y)]
is defined by means of the adjunct of the internal composition map for €
%($7 y) ® (g(c? (E) EE (g(c? y)
Analogously, the enriched representable (contravariant) 7 -functor €(—,c): € —
7' is defined on objects by the assignment € 3 x — ¥(x,c) and the assignment
Cg(_v C):c,y : %(1‘7 y) - [Cg(ya C)a (g(xv C)]
is defined by means of the adjunct of the internal composition map

€(y,c) @€ (z,y) ——— E(x,c)

Definition 4.28. A 7 -enriched natural transformation or 7 -natural transforma-
tion a: § — U between 7 -enriched functors §,4: € — D is defined by the follow-
ing data:
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e For all € € an arrow a,: 1 — D(Fx,Uz) so that for each pair of objects
x,y € €, the following square commutes in 7":

URQ oty o

DUz, y) ® D(Fr, Uzr) ——— D(Fz, Lly)

Remark 4.29. There is an obvious composition for 7"-natural transformations: the
vertical composite Sa of 7 '-natural transformations a: § — U and 3: U — §, both
from € — 2, has component Sa), at x € € defined by the composite

1 @ D(Uz, H7) @ D(Fr, ) ——— D(Fz, H)
Having such a notion of coomposition, a 7 -natural transformation a: § — 4 is
called a 7 -natural isomorphism if there exists an inverse o~ ': { — F.

Example 4.30. A morphism f: 1 — €(z,y) in the underlying category of a
7 -category € defines a 7 -natural transformation f*: €(y,—) — €(x,—) whose
component at z € € is defined by applying the isomorphism

%(17 [%(% z>7 %(337 Z)]) = 7(%(:‘/7 Z)7 & (, Z))
to the morphism
E(—,z
15 %,y = [8(y,2), (. 2)]
Corollary 4.31. For any cartesian closed category 7", there is a 2-category 7"-Cat
of 7 -categories, ¥ -functors and 7" -natural transformations.

Proof. See [38] A.3.6. O

Lemma 4.32. For objects x,y in a 7 -category € the following are equivalent:

(i) x and y are isomorphic as objects of the underlying category of €.
(ii) The Set-valued unenriched representable functors €o(x, —), Goly, —): € —
Set are naturally isomorphic.
(iit) The 7 -valued unenriched representable functors €(x,—),€(y,—): € —
7" are naturally isomorphic.
(iv) The ¥ -valued ¥ -functors € (z,—), € (y,—): € — 7 are ¥ -naturally iso-
morphic.

Proof. One notes that the underlying set functor is actually a 2-functor (=)o : 7'-Cat —
Cat. Hence the fourth statement implies the third. The tirhd statement implies the
second by whiskering with the underlying set functor (—)¢: 7" — Set. The second
statement implies the first by the unenriched Yoneda Lemma. Finally, the first
statement implies the last as follows: if f: 1 — € (x,y) and g: 1 — €(y, ) define
an isomorphism in the underlying category of &, then the corresponding 7 -natural
transformations of Example 4.30 define a 7"-natural isomorphism. O

4.3.1. Enriched (Co)Ends. Let 7" be a closed symmetric monoidal category and let
% be 7 -enriched. Let §: €°° x € — 7" be a 7 -enriched functor. Then there is a
covariant action of € on §, with components

C:c,y,z : g(m> y) ® %(ya Z) - 3(337 Z)

as well as a contravariant action of € on § with components

6%%2: s(y7 Z) ® (g(z7 y) - S(l‘, Z)
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Spelling this out explicitly, the covariant action comes about by taking the adjunct
of the morphism

(3. 2): € (0.2) = [(,9). 5. 2)]) € 7/ (8 (0. 2), [§(0.9). 3. 2))

while the contravariant action is obtained as the adjunct of the morphism
(5(=2): (@,9) = [, 2), 8z, 2)]) € 7 (€ (2,9),[5(0, 2), 5(x, 2)))

Definition 4.33. Let € be a 7 -enriched category and suppose we are given a
7 -enriched functor §: €°P x € — 7,

o A 7 -extranatural transformation ¥: v—F from v to § consists of a family
of arrows in 7"

9o v — Fle, )

indexed by objects ¢ € €, such that for every pair of objects (z,y) in &,
the composites below agree:

V@G (z,y) —= s F(2,2) @E (2, y) — 22 F(,y)

19?/®id 53%91?/
vR%€(2,y) —— FWy) ®@FC(z,y) ——— F(z,y)
e A 7 -enriched end of § is an object

J F(c,e)e?
c: €
equipped with a 7 "-extranatural transformation

9 J (e, 0)>F
c: €

such that for any other 7 -extranatural transformation w: v—>g, there

exists a unique morphism f: v — § F(c,c) such that
c: 6

we =V f
for all objects ¢ in €.
Remark 4.34. For 7" a closed symmetric monoidal category and € a 7 -enriched

category along with a 7 "-enriched functor §: €°P x € — 7" a 7 -enriched functor,
the enriched end of § is equivalently given as the equalizer of

¢
@3(0, c) .11 g[%(01702)73(01,02)]
ce 3 c1,C2€

with ¢ in components given by
erent Slea, ca) = [€(cr, c2),F(c1,2)]
which is defined to be the adjunct of
F(=,c2): Gler, e2) = [B(e2, e2),F(e1, c2)]
Similarily, £ has components given by
Cernea s Sler, 1) = [Ber, c2),F(er, e2)]
which is defined to be the adjunct of
S(e1, =) €ler, e2) = [Fler,en), §(ers ca)]



Dually, the enriched coend is the coequalizer of
_
€ (ca,cC c1,cC c,c
ng (c2,c1) ®F(cr,e0) 7 IZIS( )
where the parallel morphisms are again induced by the covariant and contravariant
action of §.

4.3.2. Enriched Yoneda Lemma. In order to make sense of an enriched Yoneda
Lemma, we need to define enriched functor categories:

Definition 4.35. Let € and @ be 7 -enriched categories. Then the 7 -enriched
functor category D% is the ¥ -enriched category whose

e objects are given by 7 -enriched functors € — 2.

e hom-objects in 7" are given by the enriched end-formula:

D (F.uU J D(Fe, )

Lemma 4.36. The underlying set of the ¥ -object of 7" -natural transformations
VC(F, ) is the set of ¥ -natural transformations § — 4.

Proof. The underlying set functor (=)o = 7(1, —) preserves all limits. Therefore,
there is an equalizer diagram in Set of the form
7 (1, § e, Uc)) y 11 7 (Fe,the) ——= [] 7(5¢,4e)
c: € ceC c,c'e®
where we identified 7'(1L, [§c,4c]) = Z'(Fe,4c). The object in the middle is

the set of indexed sets of component morphisms {Fc I $lc}eew. The fact that
7' (1, S [Fe, fhe]) is an equalizer for the above parallel pair then precisely means

that 1ts elements are 7 -enriched natural transformations. O
Example 4.37. For 7" = Set, the above reproduces the ordinary functor category.

Example 4.38. For 7 = R>( u {c0} with the monoidal product given by addition,
a 7 -enriched category X is simply a metric space, with the distance between points
x,y € X given by X (z,y). Given two such metric spaces X,Y and maps f,g: X —
Y, the distance between the maps is

YX(f.9) J Y (f(x), g(x)) = sup Y(f(x), g())

zeX

The Yoneda Lemma essentlally boils down to ’evaluation at the identity is an
isomorphism’. In the enriched context the enriched object of natural transforma-
tions is defined via a limit, so it is more straightforward to define the map which
induces a natural transformation instead. Given an object ¢ in a small 7 -category
% and a 7 -functor §: € — 7/, the internal action of § on arrows transposes to
define a map that equalizes the parallel pair

3  11[6(e2).5 ] 11 [6(c.2) 9 6(c.0).50]

and thus this induces a canonical map §c — 7 ¢(€(c, —),F) in 7.

Theorem 4.39 (Enriched Yoneda Lemma). For any small ¥ -category €, any
object c € €, and any ¥ -functor §: € — 7, the canonical map defines an isomor-
phism in 7

Fe ———— 74 (€(c,-),F)



which is ¥ -natural in both ¢ and §. In terms f enriched ends, this reads as

f [€(c,c), Fd] =~ Fc
¢ %

Proof. In order to verify the isomorphism, it suffices to show that the internal action
of § constitutes a limit cone together with Fc. So suppose we are given another
cone over the parallel pair

v—2 1;[%[%(0,2),3’2] - Q%[%(c,z)@)%(x,y),gy]

We then define a candidate factorization by evaluating the transpose of the com-
ponent A, at 1.:

Ac(le) = RN E(c,c) ®v ey e

That A.(1.): v — §c indeed defines a factorization of A through the limit cone,
it suffices to show commutativity at each component [€(c, z),§z] of the product,
which one verifies in transposed form:

C(c,z)®v
1d®1.Qv
C(c,2) ®E(c,c)®v LN C(c,z)®v

id®Ac Az

5z

C(c,2) ®Fz S

The upper triangle commutes, because of the identity law for € while the bottom
square commutes because \ defies a cone over the parallel pair. For the remaining
details, see Theorem A.3.11 [38]. O

Corollary 4.40. For any small 7 -category €, any object ¢ € € ad any ¥ -
fuctor §: € — ¥, there is a natural bijection between 7 -natural transformations
a: G(e,—) > F and elements u: 1 — Fc in the underlying set of Fc implemented
by evaluationg the component at c € € at the identity 1..

Definition 4.41. A cosmos is a complete, cocomplete, closed symmetric monoidal
category 7 .

Proposition 4.42 (Enriched Co-Yoneda Lemma). Let 7" be a cosmos. For§: €°P —
D a V -enriched functor, and for c € €, there is a natural isomorphism

c: 6
5>~ f € (c,—) ®Fc

Proof. By the definition of enriched coends, enriched natural transformations of
the form

c: €
J Ec,—)®Fc— U
are in natural bijection with systems of morphisms
E(c,d) ®Fe — U
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which satisfy compatibility conditions in their dependence on ¢ and ¢’. By the
internal hom adjunction these systems are in natural bijection to systems of the
form

e — [€(c, ), U]
satisfying analogous compatibility conditions. These in turn are in natural bijection
with systems of morphisms
Fe— V(% (c,—), )
natural in ¢. By the enriched Yoneda Lemma these systems are in natural bijection
with systems of morphisms
Fe — Uce

natural in ¢. In particular, all these identifications are also natural in 4. Therefore,
this shows that

c: €
7( J (e, ~)®Fe,~) = 75, -)
For further details see the Nlab page Geometry of physics Proposition 3.18. U

Proposition 4.43 ([38] Proposition A.3.3.14). Let A: P x D — 7 be a 7'-
functor so that for each d € D, the 7 -functor A(—,d): G°P — ¥ is represented by
some §c € D, meaning there exists a ¥ -natural isomorphism

€ (c,§d) = A(c,d)

Then there is a unique way of extending the mapping c € € — Fc e D to a 7 -fuctor
F: € — D so that the isomorphisms are 7 -natural in c € € as well as d € D.

Definition 4.44. Let € be a 7 -enriched category. The enriched covariant Yoneda
embedding is the enriched functor

X:€->7%", ¢ %(—0
Analogously, the enriched contravariant Yoneda embedding is the enriched functor
3 €GP > VE, c— Blc,—)
Definition 4.45. Let € and 9 be 7 -enriched categories.
e A 7 -enriched adjunction

5
€ L D
o

is a pair of 7 '-enriched functors such that we have 7 "-natural isomorphisms
between enriched hom-functors

€S, —) =2(—40)

e Let §: € — D be a functor. The enriched left Kan extension along §,
denoted Lang, is an enriched left adjoint to the precomposition functor
§*: &2 — &%. Analogously, the enriched right Kan extension along §,
denoted Rang, is an enriched right adjoint to the precomposition functor
§*: &2 — &%, In other words, enriched right and left Kan extensions fit
into a diagram of enriched adjunctions

Lang

m

g@ 3+ Cg%



https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#LimitsAndColimits
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Analogous to standard category theory we have:

Proposition 4.46. For 7" a cosmos, let €, D be small 7 -enriched categories and
let §: € — D be a 7 -enriched functor. Then precomposition with § constitutes a
7 -enriched functor
3:97 -6
U UF
The enriched functor §* has both an enriched right adjoint Rang, as well as an
enriched left adjoint Lang given by taking right and left Kan extensions along §,

respectively. Explicitly, the right Kan extension Rang evaluated at $ € €7 is given
by the enriched end

Rangil = f [D(—, Fc), Uc]
c: €
while the left Kan extension Lang evaluated at 3l € €7 is given by the enriched
coend

c: €
Langil =~ f D(Fe, —) Q7 Fe

Proof. This is essentially analogous to the unenriched case. For details see the Nlab
article geometry of physics — categories and toposes Proposition 3.29. (]

4.3.3. Tensors and Cotensors. This chapter is based on the Nlab page powered and
copowered category.

Fix a cosmos 7.

Definition 4.47. Let € be a 7"-enriched category.

e A powering or cotensoring of € over 7" is a functor {—, —}: Z°Px€ —> €
such that for any v € 7" we have enriched natural isomorphisms (natural
inc,ce®)

[v, € (c1,c2)] = € (e, {v, c2})

e A copowering or tensoring of € over 7" is a functor ®: 7" x € — € such
that for any v € 7" we have enriched natural transformations (natural in
C1,C2 € %)

C(vOcr,ca) = [v,€(c1,c2)]

e If € is equipped with a tensoring or cotensoring, then € is called tensored
or cotensored over V.

Remark 4.48. If € is both tensored an cotensored, then we get a pair of adjunctions
vO—

m

4 [v,—] €
\i/
{’Uv_}

and therefore, in particular, v ® — - {v, —}.

Example 4.49. The canonical examples are given by Remark 2.21 and Remark
2.24.


https://ncatlab.org/nlab/show/geometry+of+physics+--+categories+and+toposes#KanExtension
https://ncatlab.org/nlab/show/powered+and+copowered+category
https://ncatlab.org/nlab/show/powered+and+copowered+category
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Example 4.50. Suppose € is cocomplete. Then the category €2 of simplicial
objects in € is simplicially enriched, i.e., sSet-enriched. Moreover, it is tensored
over sSet. Indeed, the tensoring is defined by

—O—:sSet x 2" - @A, sSet x €27 3 (S,F) — ([n] — H&[n]) eg’”
Sn

The simplicial mapping object 2™ (—, —) may then be the deduced from the above
formula as follows: We want to have a natural isomorphism

G2 (S OF,4) = sSet(S, €27 (5. 41))
Taking S to be representable we obtain
G2 (A" O F,4) = sSet(A", B2 (5, 40)) = €27 (5, W),
In the future we shall simply denote 2™ (F, {) by Map(F, ).

Dually, in the case where € is complete, the simplicially enriched category €2 is
also cotensored:

(oo} St x €27 @AY, E 2 (5,3) o ([n] - [ [1n]) € 62
Sn

4.3.4. Day Convolution. This chapter is based on the NLab article Day convolution
and the corresponding material in [23].

Any category of functors on a (symmetric) monoidal category inherits a (symmet-
ric) monoidal structure via a categorified convolution product. Before explaining
this further, we note that there is a concept of a symmetric monidal 7 -enriched cat-
egory: One simply has an enriched tensor functor and suitable enriched coherence
datum (for details see Definition 4.1 in [22]).

Definition 4.51. Let 7" be a closed symmetric monoidal category with all small
limits and colimits and let (€, ®, 1) be a small 7 -enriched monoidal category. Then
the Day convolution tensor product on the % -enriched functor category 7%
Opay: 7 x7¢ - 7%
(37 ﬂ) = S"@Day b1
is given by the enriched coend
(c1,c2): €X€

(T ®pay )(c) == J E(c1 ® c2, ¢) Ry Fe1 Ry Sheo

Remark 4.52. We note that if ®: 7% x ¢ — 7% denotes the external tensor
product, i.e., FRLU = ®y o (F,U) for F, U € 7%, then the Day convolution product
of two functors is equivalently the left Kan extension of their external tensor product
along the tensor product ®g¢:

€ x € SO 7
_‘(
(93 ' {?@DayM;Lan&g (3’@11)
Y
%

Thus, we also have the characterizing universal property given by

7% (T Ppay 1, H) = 7 (TR, $H 0 Q)


https://ncatlab.org/nlab/show/Day+convolution
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Proposition 4.53. For (€¢,®,1) a small symmetric monoidal ¥ -enriched cate-
gory, the 7 -enriched functor category 7€ is a closed symmetric monoidal category
with the tensor product being given by Day convolution, that is, (7/%,®Day, Sgl)
constitutes a closed symmetric monoidal category. Its internal hom [—, —|pay is
given by the end

[X, Y Jpa(€) = j (X (1), Y (c® )l
c1: 6

lle

f [€(c®ci,c2),[Xer, Yealr]r
C1,C2
where [—, —|o is the internal hom in 7.
Proof. Let us start by verifying associativity: For X,Y,Z € "% we have
a,b
X Oy (¥ @0y 2) = [ Gla®0,-) 07 Xa @y (¥ Onuy 2)0)

lle

a,b c,d
J %(a@b, 7) ®<~7 Xa@ay f %(c@d, b) ®7 YC@W Zd
a,b,c,d

%(a@b, —) ®7 %(c@d, b) ®7 Xa®7 YC®7 Zd

12

a,c,d
~ f Ca®c®d,—) Ry Xa®y Yc®y Zd

In the same fashion one verifies

a,c,d
(X ®pay Y) ®pay Z = J Fa®@c®d,—)Qr Xa®y YcQy Zd

Moreover, we have

a,b
X @by Segl = J%(a@)b,—)@% Xa®%(1,b)
a,b

J G(a®b,—) @ (1,b) ® Xa

I

~ J%(am,—)@?/ Xa

= j%(a,—)@w Xa
>~ X

The other claims concerning the symmetric monoidal structure present similar exer-
cises in the spirit of the usual coend yoga. Finally, let us verify the claim concerning
the internal hom:

V(X ®pay Y, Z) = J%((X ®pay Y)(c), Zc)

lle

J 7 (€(a®b,c) ®r Xa®y Yb, Zc)

a,b,c
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~ J 7 (Xa,[Yb,[€(a®b,c), Zc|7]y)
b

a,b,c

lle

7 (Xa, [V, J[‘g(a ®b,¢), Zcvly)

s)

,b

~ | 7(Xa,[YD, Z(a®b)]7)

2
o

~

7 (Xa, J[Yb, Z(a®Db)]y)
b

= JW(Xa, [Y7 Z]Day(a))

Qfﬁ

= VX, [Y, Z]pay)
Showing the second formula for the internal hom is an easy exercise in the coend

yoga. U

Remark 4.54. Let € be as in the above proposition and consider the Yoneda embed-
dings S.c and S.¢ for objects ¢,c¢’ € €. Then the Day convolution tensor product
of representables is the representable of the respective tensor product of objects:

J E(c1 ® c2,0) Ry Sac(c1) @ S5 (2)

C2 C1

JJ (%(01 ®c2,¢) ®r w§\0(cl)) Qv 5 (@)

(3¢ @Dy +-¢)(@)

lle

12

j%@®%a®7&aa
= 5.(c®)@)

In that sense, Day convolution is an extension of the ordinary tensor product to
the whole functor category and not just its representables.

Example 4.55. Let 7" := Set and let € be a category with finite products and
terminal object, that is, a cartesian symmetric monoidal category. Now consider
the presheaf category Set®” which, by Proposition 4.53, may be endowed with a
closed symmetric monoidal structure given by the Day convolution tensor product,
since €°P is a Set°P-enriched category. For X,Y € Set® ", we have
C1,C2
XQ®Y = J EGP(c1 xP ey, —) x Xey x Yeg

C1,C2

= J c}:Cl X ckCQXXCl XYCQ

~ (Ticl X Xc1> X (TJZCQ X Y02>

~ X xY

Thus in this case the Day convolution monoidal structure agrees with the typical
op

cartesian monoidal structure on the presheaf category Set® . The corresponding

internal hom may then also be deduced by using the second formula presented in
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Proposition 4.53:

[X, Y |pay(c) = J Set(€°P(c x ¢1,¢a),Set(Xer, Yea))

C1,C2

lle

J Set(€(c2,¢) x €(c2,c1), Set(Xc1,Yea))

C1,C2

lle

J Set(€(ca,c) X B(ca,c1) x Xei, Yea)

C1,C2

~ fSet("g(CQ,c) X (T"’g(cz,cl) X Xcl), Yes)

x JSet(%(CQ,c) x Xca,Yea)
ez
>~ Set® (ke x X,Y)
which retrieves the formula from Example 4.14.

Example 4.56. Consider the category & of finite pointed sets, which has as its
objects finite sets which have chosen basepoints. Morphisms between such pointed
sets are given by functions between the sets that map basepoint to basepoint. The
category & is symmetric monoidal with the smash product

F1 X F2

F1 \4 F2

where v: F x F — F is the wedge sum, which maps (F}, F») to the quotient of
the disjoint union of F and F5 where the respective basepoints are identified:

F 1] F

ol TP O

ANMFXF >F, (F1,Fy) — Fy A Fy =

To summarize and to put it more concretely, the smash product of two pointed sets
Fy and F; is the quotient of the cartesian product F; x F5, where all points with
the basepoint as a coordinate are identified (that is, (xg,, fo) ~ * ~ (f1, *F,) for all
f1 € Fy and all f5 € Fy). In particular, if Fy == {x,1,...,1} and Fy := {x,1,...,1'}
for natural numbers [,l’, then Fy A Fy = {x,1,...,l'}. In fact, the symmetric
monoidal category & is closed:

F(Fy A Fy, F3) = F(Fy, Ff™)

where Ff ! is the corresponding internal hom which is given as the pointed set of
basepoint preserving functions F} — F3, which itself has as the distinguished base-
point the constant function *: F; — F3 which maps every f € F} to the basepoint in
F5. Moreover, consider the simplex category A, which may also be viewed as a sym-
metric monoidal category, where the corresponding tensor functor +: A x A — A
is simply given by taking the product in the category A. Note that a product of [n]
and [m] in A is given by [n+m] with the evident projection maps. Finally, let Cart
be the category of cartesian spaces, which has as its set of objects all those open
subsets U < RY, for varying d, such that U is diffeomorphic to R%. Morphisms in
Cart are given by smooth maps between the respective open subsets. This category
is symmetric monoidal too by means of the cartesian product.

d
Having all this, we let 7" := Set and € := (AX9)°P x F x Cart?, where A*¢ := [] A
i=1



is the n-fold product of the simplex category. The category € is then symmetric
monoidal and 7 -enriched (just a standard category). By Proposition 4.53 we thus
obtain that the functor category 7% is a closed symmetric monoidal category with
the tensor product being given by Day convolution, that is, for X,Y € ¢ the Day
convolution tensor product X ® Y is given by

% G

JJAXd(m,ml + 1’1’12) X g(Fl A FQ,F) X Cart(U, U, x Ug) X X(ml,Fl,Ul) X Y(mg,FQ,Ug)
where the coend is taken over the variables (m;, F;,U;) € AXd x F x Cart for

i = 1,2. Motivation for why we would choose € the way we did here is given in
later sections on smooth symmetric monoidal (00, d)-categories.
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5. MODEL CATEGORIES

Frodo: ’I wonder what sort of a
tale we’ve fallen into?’

Sam: I wonder if we’ll ever be put
into songs or tales.’

Frodo: "What? You mean like in
the songs where they tell you what
to do?’

Sam: ’No, I mean the ones that
really mattered. Full of darkness
and danger, they were, and
sometimes you didn’t want to know
the end, because how could the end
be happy? How could the world go
back to the way it was when so
much bad had happened? But in
the end, it’s only a passing thing,
this shadow. Even darkness must
pass. A new day will come, and
when the sun shines, it’ll shine out
the clearer.

Tolkien, J.R.R. The Fellowship of
the Ring

The following Chapter is based on [19].

The category of topological spaces naturally allows us to study continuous de-
formations between spaces, which is captured by the notion of a homotopy. Model
category theory is a powerful framework that generalizes homotopy theory by in-
troducing an abstract category with additional structure that captures the notion
of homotopy between morphisms. A model category provides a unified approach to
many different areas of homotopy theory and allows us to define homotopy limits
and colimits, as well as notions of homotopy equivalences between objects. This
extra structure is essential for studying the homotopical behavior of mathematical
objects in a wide range of contexts, including algebraic topology, algebraic geom-
etry, and algebraic K-theory. This chapter will introduce the basic concepts and
properties of model categories, and lay the groundwork for future discussions of
higher category theory and co-categories. Model category theory provides a power-
ful tool for understanding the homotopical structure of mathematical objects and
their relationships to one another, and is a key ingredient in many areas of modern
mathematics and physics.

5.1. Definitions. Recall that €™ is the category of functors [n] — €. In par-
ticular, if n = 1 the category €Y may be identified with the category that has as
objects morphisms of € and as morphisms commutative squares in €.

Definition 5.1. Let € be a category.
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e A morphism f in & is called a retract of a morphism f’ in €, if there
exists a commutative diagram

ldomf

/—\\
domf —— domf’ ———  domf
|
f f! f
!

codf —— codf/ ——— codf

\//

leoay

e A functorial factorization for € is a section Z: €11 — @[ of the com-
position functor d;: €2 — @l ie., di= = lem

Remark 5.2. Equivalently, a functorial factorization is a pair (21, Z2) with =, =
being functors €1 — @ such that for any morphism f in € we have the following
factorization:

dom f SR S codf

\/

Definition 5.3. Let ¢ and p be morphisms in €. We say that ¢ has the left lifting
property (LLP) with respect to p and p has the right lifting property (RLP) with
respect to 7, if for any commutative diagram

dom(i) —— dom(p)

cod(i) — cod(p)
there exists a lift h: cod(i) — dom(p) such that

dom(i) —— dom(p)

commutes.

Definition 5.4. Let & be a category.
o A model structure on € is a triple

(%', Fib, Cof)

consisting of distinguished classes of morphisms %', Fib, Cof of € such
that the following axioms hold:

— 2-out-of 8 axiom: The class # contains all isomorphisms in € and
for all morphisms f, f/ in €, if any two of f, f', ff’ is in #, then the
third is also in 7.

— Retract axiom: If f, f’ are morphisms in € such that f is a retract of
/" and f’ is a morphism in one of the three classes 7', Fib, Cof, then
so is f.

— Lifting axiom: The class of morphisms %" n Fib enjoys the LLP with
respect to the morphisms in Fib. The class of morphisms %" n Cof
enjoys the LLP with respect to the morphisms in Cof.
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— Factorization axiom: There exist functorial factorizations Zcif, Sger
such that for all f € € we have

WﬁCofa(Etcf)lf/> . Wﬂemb
f

dom f codf

Cofa(E\ctf)lf\% ° A;fEWﬁFib

where o denotes the respective (most likely distinct) codomains of the
morphisms (Ecir)1f and (Eger)1 f-
e For a model structure

(W', Fib, Cof)

on % the morphisms in %" are referred to as weak equivalences, the mor-
phisms in Fib are called fibrations and the morphisms in Cof are called
cofibrations. Morphisms in Fib™ := % n Fib are called trivial fibrations,
while the morphisms in Cof™ := %" n Cof are referred to as trivial cofibra-
tions.

e A model category € is the information of a model structure

(€, #', Fib, Cof)
on € such that & is both complete and cocomplete.

Remark 5.5. The notation Z.i¢ and Zi.¢ is chosen so as to remind the reader that
the first functorial factorization factorizes morphisms into

cofibration . trivial fibration
c tf

while the second one factorizes as

trivial cofibration . fibration
tc f

which motivates the shorthand-notation ctf and tcf.

Example 5.6. Let € be a complete and cocomplete category. One can define three
different model structures on & by defining one of the subcategories %", Cof, Fib to
contain all isomorphisms of €, and the other two to contain all maps of €. This
can be shown to give rise to three distinct model structures for €. For details see
[19].

Example 5.7. For model categories % and €, the category % x € inherits a model

structure and may thus be interpreted as a model category.

Remark 5.8. Model categories are self dual: For a model category € the opposite
category €°P has a canonical model structure induced by the one on €. Since we
also have (€°P)°P = € as model categories, every theorem about model categories
has a dual theorem.

Since a model category € is, by definition, both complete and cocomplete it
must always have both a terminal object x € € and an initial object (J € €.

Definition 5.9. Let € be a model category with terminal object * and initial
object .
e An object X € € is cofibrant if the morphism
g—X

is a cofibration.
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e An object X € € is fibrant if the morphism
X —

is a fibration.

Proposition 5.10. Owver and under categories of model categories come endowed
with a model structure. More concretely, if € is a model category and X € €, then
€ induces a model structure on both €/X and X /6.

Proof Sketch. Let II: €/X — & be the forgetful functor. A morphism f € €/X
is defined to be a cofibration (fibration, weak equivalence) if and only if IIf is a
cofibration (fibration, weak equivalence). O

Note that we can decompose the morphism § — X by means of our functorial
factorization as

(Eetr)1 (F—X) LX (Best)2(F—X)

\/

First of all, this gives rise to a functor L: € — % which sends a morphism f in €
to the bottom map of the image of the commutative diagram

%] X

g—9

| |

dom f — codf

under (Ec¢)1. In particular, we note that LX is cofibrant (the map @ — LX is a
cofibration by construction). Moreover, we get a natural transformation

LX 5 X e Fib™
with Ix = (Ecr)2(F — X). The maps Ix: LX — X assemble into a natural weak
equivalence
that is, [ is a natural transformation such that each component is a weak equiva-
lence. Naturality is obtained from

S

g —Y LYZ*>Y
Y

g — X LX X, x
(Ectf)2< >

Utilizing the other functorial factorization Zi.¢ in the definition of the model cate-
gory €, we also obtain a functor R: € — % such that RX is fibrant and a natural
weak transformation 7: 1¢ — R. The functor L: € — % is referred to, very aptly
so, as the cofibrant replacement functor and the functor R: € — € is referred to
as the fibrant replacement functor.

Example 5.11. The most important model category we will consider is the Quillen
model structure on simplicial sets sSetquiren. Cofibrations are given by monomor-
phisms, and weak equivalences are given by weak homotopy equivalences i.e. mor-
phisms which become weak homotopy equivalences in Top after applying geometric
realization. A fibrant replacement functor for sSetquiien is given by Kan’s functor
Ex®. We will talk more about the Quillen model structure later.

Lemma 5.12 (Retract argument). Suppose f = pi in a category €, and suppose
that f has the LLP with respect to p. Then f is a retract of i. Dually, if f has the
RLP with respect to i, then f is a retract of p.
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Proof. Suppose f has the LLP with respect to p. Then we have a lift r: codf —
cod(%) such that

domf —— cod (i)

7
fJ{ e lp

codf = cod(p)

commutes. But then the diagram

domf =—— dom(i) == domf

| L 5

codf —— cod(i) —;— codf

realizes f as a retract of 7. O

The retract argument from above implies that some of the axioms for a model
category are redundant.

Notation 5.13. If € is a model category and 2 < Mor® is a family of morphisms
from &, then define ¥ to be all those morphisms that enjoy the LLP with respect
to all morphisms in @. Analogously, 29 is the family of morphisms that enjoy the
RLP with respect to all morphisms in 9.

Lemma 5.14. Let € be a model category. Then the following holds:

Cof = YFib™
Cof™ = BYFib

Fib = Cof~¥
Fib™ = Cof?

Proof. By definition of a model structure, any cofibration has the LLP with respect
to trivial fibrations. Conversely, suppose f has the LLP with respect to all trivial
fibrations. By means of our functorial factorizations we may factorize f = pi, where
i is a cofibration and p is a trivial fibration. By assumption f has the LLP with
respect to p, and therefore by Lemma 5.12 f is a retract of i. By the retract axiom
of model categories f € Cof. The part with the trivial cofibration is analogous and
the remaining claims follow by duality. ]

Remark 5.15. In particular, any isomorphism in & is a trivial cofibration and a
trivial fibration. Indeed, if f is an isomorphism in € and f’ € Fib such that we
have a commutative square

domf —— domjf’
L
codf —— codf’
then there is a lift B — C given by the composition
F1

codf domf dom f’

Corollary 5.16. Let € be a model category. Then cofibrations (trivial cofibrations)
are closed under pushouts. That is, if we have a pushout square

domf —— domjf’

L)

codf — codf’
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where [ is a cofibration (trivial cofibration), then [’ is a cofibration (trivial cofibra-
tion). Dually, fibrations (trivial fibrations) are closed under pullbacks.

Proof. Suppose we have a pushout square
domf —— domjf’
fl lf’
codf —— codf’

with f being a cofibration. By Lemma 5.14 it suffices to show that f’ has the LLP
with respect to all trivial fibrations. Let p be a trivial fibration in € and consider
the lifting problem

domf —— domf’ —<— dom(p)

fl //,,/”'// lp

codf = codf’ cod(p)

which admits a lift h: codf — dom(p), since f is a cofibration. The data of the

pushout codf’ of the diagram codf < dom f — domjf’ may be equivalently
described as an initial object

(codf’, AT — codf/>

in the category of elements of §, where § is the functor associated with the given
pushout. The commutative diagram

domf —— domf’
/] I
codf —— dom(p)
gives rise to an object
(dom(p)7 w: g — dorn(p)) € el(F)

By the universal property of the pushout, we obtain the existence and uniqueness
of a morphism ¢: codf’ — dom(p) such that, in particular,

dom f’ _, codf’
ql k///“;/
dom(p)
commutes, but this exactly solves the lifting problem
dom f’ —*— dom(p)
f’l e - lp
codf’ % cod(p)

Showing that trivial cofibrations are closed under pushouts is analogous and the
remainder follows by duality. O

One of the most useful results about model categories is provided by the next
lemma:
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Lemma 5.17 (Ken Brown’s lemma). Let € be a model category and suppose D
is a category with a subcategory of weak equivalences which satisfies the 2-out-of 3
azxiom.

o [f §: € — D takes trivial cofibrations between cofibrant objects to weak
equivalences, then § takes all weak equivalences between cofibrant objects
to weak equivalences.

o If§: € — D takes trivial fibrations between fibrant objects to weak equiv-
alences, then § takes all weak equivalences between fibrant objects to weak
equivalences.

Proof. Suppose we are given a weak equivalence f of cofibrant objects. By means of

the universal property of the coproduct we may define a map (f, leodas): domf [ [ codf —
codf. Factor this map into a cofibration domf [ [ codf —L, C followed by a trivial
fibration C' -2 codf. Considering the pushout diagram

@ ——— domf

codf ——— domf [ ] codf

shows that the inclusion maps dom f 4o Jom f1]codf and codf “4 Jom f1]codf
are cofibrations. Since pgiioms = f and p are weak equivalences, by the 2-out-
of 3 axiom, gtgoms is a weak equivalence. Analogously, gicoar is a weak equiva-
lence and hence both qigoms and qieods are trivial cofibrations (of cofibrant ob-
jects). By assumption, both §(gtdoms) and §(qicods) are weak equivalences. Since
F(PGteoa f) = F(Leoa ) is also a weak equivalence, we conclude from the 2-out-of 3
axiom that §(p) is a weak equivalence, and hence that F(f) = F(Pgtdomy) is a weak
equivalence, as claimed. The dual statement follows analogously. O

5.2. The Homotopy Category. A bold category theorist, or maybe a delusional
one for that matter, would sometimes like to consider a morphism f in a general
category € as a grand generalization of a path from domf to codf, somehow
presupposing the notion of space which allows for such ideas. A formal (or symbolic)
zig zag of such (composable) paths f1,..., f, is then nothing else than an object f
in the functor category €[™. As the name of this chapter might suggest, we need
to bring in a notion of homotopy theory here. A category is said to be equipped
with a subcategory of weak equivalences if this subcategory has the same objects
(it is wide) and its class of morphisms satisfies the 2-out-of 3 axiom. Assuming
the existence of such a subcategory 7 for the category € and thinking about the
morphisms in 7 as weak equivalences between spaces, we might get to the idea of
formally inverting the arrows in 7.

Definition 5.18. Suppose % is a category with a subcategory of weak equivalences
Y/
(1]

e For n € N, the collection of formal arrows (g™ 7.

f=1,---, fn): domf; — codf,

of formal strings of composable arrows, where for all ¢ we either have
fi € €M or f; is a formal reversal of an arrow in %. Here domf; and
codf, are defined to be the formal domain and codomain of the formal
arrow f.

e The free category free(&, % ~!) has the same objects as € with classes of
morphisms

> has elements
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reversed

feee(€, 7 V) (c, ) = {f ‘ neN, fe(gm, '] », domf = ¢, codf = c’}

Empty strings €% 5 &.: ¢ — ¢ at a particular object ¢ € €, are inter-
preted as the identity at that object. Composition is defined via concate-
nation of strings.

e The class of morphisms Mor(free(€, 7 ~1)) gives rise to an equivalence
relation ~: An identity morphism 1. in € for an object ¢ € € is identified
with the empty string ¢, while any composable pair (f, f') € el is
identified with its composite f’ o f. Moreover, for any f € %" we want the
formal strings (f, f~') and (f~!, f) to be equivalent to lqoms and leoay,
respectively.

e The localization of € at W is the quotient category €[# ~!] of free(€, # 1)
obtained from the equivalence relation ~:

_ free(€,77Y)

~

€lw"]:
The associated localization functor is the canonical functor
v: € = C[W

e If & is a model category and % is the subcategory of weak equivalences,
then the localization of € at % is called the homotopy category of € and
is denoted by Ho%.

Remark 5.19. Any category € is a category with weak equivalences by defining
the corresponding wide subcategory %" to be the category having the same objects
as € with only isomorphisms as morphisms. The associated localization is then
trivial:

€ =C[w

Notation 5.20. We will sometimes write y¢: € — €[# '] for the corresponding
localization functor, if ambiguity might arise otherwise.

Remark 5.21. Tt is clear from the definition that Ho(€°P) = (Ho®)°P. Moreover, if
% and € are both model categories, then Ho(# x €) is isomorphic to Ho% x Ho®.

Without passing to a higher set theoretic universe, Ho% might very well not be
a category. It turns out however, as we will see soon enough (in Remark 5.31), that
if € is a model category the localization of € at the weak equivalences will always
turn out to be a well-defined category.

Lemma 5.22. Let € be a category with weak equivalences W .
o The pair (€|# ], ) enjoys a universal property: If a functor §: € — D

sends morphisms of W to isomorphisms in D, then there is a unique
functor €[W 1] — D such that

¢ —5 .9

-1
Wl T3

A/

commutes.
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o If QZ; < D% denotes the full subcategory of functors € — D which send
morphisms of W to isomorphisms in D, then precomposition with v yields
an isomorphism with inverse loc:

Remark 5.23. As is usual, if some mathematical object enjoys a universal property,
then that mathematical object must be unique up to unique isomorphism. Indeed,
in the above case one proves that if 6: € — & is a functor that takes maps of 7" to
isomorphisms and enjoys the same universal property as -, then there is a unique

isomorphism @[7 1] —*> & such that (y = 6.
Proof of Lemma 5.22. If § € 93}, then define loc(F) to be identical to § on objects
and morphisms of €. For (formally) reversed arrows f~! with f € %, define

loc(F)(f~1) = (Ff)~*. This is a well-defined functor €[# '] - D and it is the
unique functor such that the diagram

¢ —3 .9

o
’Yl /’/loc(S)
Ay
commutes. The isomorphism
28 =, Q€]

is then given by taking functors § € 9;? to the associated localized functors loc(F),
and natural transformations (: § — 4 are mapped to natural transformations
loc(¢): loc(F) — loc(4) with components loc(() = (. for all objects c. The inverse
of this functor takes a functor i: €[# ~1] - @ and maps it to by, and natural
transformations ¢ are mapped to the whiskering (7. O

Definition 5.24. Let ¥ be a model category. Denote by 6., €, €.y the full
subcategories of € which contain all cofibrant, fibrant, and bifibrant (objects that
are both fibrant and cofibrant) objects of &, respectively.

Proposition 5.25. Let € be a model category. Then the inclusion functors induce

equivalences of categories:
/ e

HO%Cf

N
N

Proof. We shall only verify the equivalence Ho®. — Ho®%. Let €, <> % denote
the inclusion functor. This functor preserves weak equivalences and thus induces
a functor Ho(i): Ho®. — Ho% by Lemma 5.22. We then recall the cofibrant
replacement functor L: € — €. along with its associated natural trivial fibration

X % LX. Since the diagram
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commutes, the 2-out-of 3 property implies Lf € # for any weak equivalence f in
®. Therefore, L preserves weak equivalences and again by Lemma 5.22 gives rise
to a localized functor Ho(L): Ho® — Ho%,.. The natural trivial fibration [ is then
understood as a natural weak equivalence L o7 — lg, and :0 L — lg. Hence
this induces natural isomorphisms Ho(L o) — lgog, and Ho(i o L) — lpeg, as
claimed. O

Now, if we are given a model category €, then why do we call Ho% the homotopy
category of €7 What is so homotopical about it? There is a second way to construct
Ho% which we will sketch now. Before doing so, recall that if X is an object in €
one defines the fold map V: X [[ X — X by means of the universal property of
the coproduct:

XX

/ NG
N

X X

Analogously, the diagonal map A: X — X x X is defined by means of the universal
property of the product:

X X

\ TN

X xX

Definition 5.26. Let € be a model category, and fix morphisms f,g in € with
the same domain and codomain.

e A cylinder for domf is the data of a cylinder object Cyl(domf) for dom f
along with a factorization of the fold map:

domf [ [domf domf

S

Cyl(domf)

such that ¢o[]c; is a cofibration and the map Cyl(domf) = domf is a
weak equivalence.

e A path for codf is the data of a path object Path(codf) for codf along
with a factorization of the diagonal map:

codf codf x codf

&

Path(codf)

such that pg x p; is a fibration and the map codf = Path(codf) is a weak
equivalence.

o A left homotopy from f to g consists of a cylinder Cyl(domf) for domf
along with a morphism H: Cyl(domf) — codf such that Hcy = f and
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Hey = g. More concisely, we have a commutative diagram

domf ——— Cyl(domf) +—2—— domf

S

codf

In that case, we say that f and g are left homotopic and write f L g.

e A right homotopy from f to g consists of a path Path(codf) for codf
along with a morphism K: domf — Path(codf) such that poK = f and
p1K = g. More concisely, we have a commutative diagram

dom f

A I

codf <———— Path(codf) ———— codf

In that case, we say that f and ¢ are right homotopic and write f ~ g¢.

e The morphisms f and g are said to be homotopic, if they are both left and
right homotopic. In this case we write f ~ g.

e [ is said to be a homotopy equivalence if there is a morphism f’: codf —
domf such that f/f ~ ldomf and ff/ ~ lcodf-

Remark 5.27. A path object for X in € is the same as a cylinder object for X in
the model category €°P. Similarily, the notions of right and left homotopy between
two morphisms f and g are dual. Hence we may restrict ourselves to proving results
about left homotopies and cylinder objects.

By means of our functorial factorizations we may construct a cylinder object
X x I (the product here should be interpreted suggestively only) for any X € €.
Indeed, apply the functorial factorization to the fold map X [[ X — X to obtain a
cofibration X [ [ X — X x I along with a trivial fibration X x I = X. Dually, there
is a path object X! (this is yet again solely suggestive notation) for X by applying
the other functorial factorization to the diagonal map, and in this case X = X/ is
a trivial cofibration. In fact, if Cyl(X) is an arbitrary cylinder object for X, then
there is a weak equivalence Cyl(X) = B x I compatible with the structure maps
¢o | [ e1 and the corresponding weak equivalences:

ol X xI
_colle |
/>[

X]Ix

coller /h’ ~

-
-

-
-
-

Cyl(X) —— X

The morphism £ is a lift whose existence is guaranteed by means of the LLP enjoyed
by the fibration cg [ [ ¢1 with respect to the trivial cofibration X x I = X. By the
2-out-of 3 property h is then a weak equivalence. Analogously, there is a weak

equivalence X! 5 Path(X) for any path object Path(X) compatible with the
associated structure maps.

Theorem 5.28 (Whitehead). Let € be a model category. A weak equivalence
between two objects which are both fibrant and cofibrant is a homotopy equivalence.
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Proof. By means of the given functorial factorization in € and the 2-out-of 3 prop-
erty any weak equivalence f in € factors through an object Z as a composition
of a trivial cofibration followed by a trivial fibration. In particular, if domf and
codf are both fibrant and cofibrant, so is Z. Hence it suffices to prove that trivial
(co)fibrations between bifibrant objects are homotopy equivalences. So let f be a
trivial fibration between bifibrant objects (the other case is dual). Then

& ——— > domf
1
CofaJ/ N lfeFib:

codf — codf

induces a right inverse f~! for f. To see that f~! is also a left inverse up to left
homotopy, let Cyl(domf) be any cylinder object for domf, that is, a factorization

domf [ [domf ——Y— domf
Cofaco [[ a1 CEFib™
Cyl(domf)

and consider the commuting square

domjf [ [domf JM dom f

Cofscg [ [ e1 n feFib™

Cyl(domf) — codf

which, by construction, admits a lift 7: Cyl(domf) — domf which then constitutes
the wanted left homotopy. O

Proposition 5.29. Let € be a model category. Then the following is true:

e For X' a cofibrant object and X a fibrant object of €, the left and right
homotopy relations coincide and are equivalence relations on € (X', X).

e The homotopy relation on the morphisms of €5 is an equivalence relation
and is compatible with composition.

o A map of G.5 is a weak equivalence if and only if it is a homotopy equiv-
alence.

Proof. See [19] Corollary 1.2.6 and 1.2.7 and Proposition 1.2.8. O

Corollary 5.30. Let € be a model category and let % denote the quotient category
obtained from G.r by factoring out by the homotopy relation ~. Let v: G.p —
Ho®.s and 6: Goy — @ be the corresponding localization and quotient functors.
Then there is a unique isomorphism of categories

Gt —)i Ho%cf

~

such that jo = . Furthermore, j is the identity on objects.

Proof. One shows that €.;/. satisfies the same universal property as Ho®,;
Ho®.s. For details see [19] corollary 1.2.9.

O

Remark 5.31. By Corollary 5.30 and Propositon 5.25 we have
e
2~ Ho%,; ~ Ho®

~
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which asserts that, whenever € is a model category, the localized category Ho® =
€[w; '] is a well-defined category.
In [19] the next result is referred to as the fundamental theorem of model cate-
gories:
Theorem 5.32. Let € be a model category. Denote by v: € — Ho® the canonical
functor, and let L and R be cofibrant and fibrant replacement functors.
e There are natural isomorphisms

F(X,Y)

%(LRX,LRY) N Ho%(VX Y) %(RLX,RLY)

where the dotted arrow makes sense and is an isomorphism if and only if
X is cofibrant and Y is fibrant.

e The localization functor v identifies left and right homotopic maps.

o Any morphism f in € such that vf is an isomorphism in Ho®€ is a weak
equivalence.

Proof. See [19] Theorem 1.2.10. O

5.3. Quillen Functors and Quillen Adjunctions. We shall introduce the no-
tions of Quillen functors and Quillen adjunctions in this chapter. The material is
based on the corresponding chapters in [19].

As is quite clear from the definition, a model category is a category with extra
homotopical structure. Standard adjunctions between model categories are not
able to translate all the relevant structure from one model category to the other.
The idea of Quillen adjunctions (and Quillen functors in general) is precisely this:
To give us a nice enough notion of adjunctions between model categories which also
preserve the given homotopical information.

Definition 5.33. Let € and 9 be model categories.

e A functor §: € — D is called a left Quillen functor if § is a left adjoint
and preserves cofibrations and trivial cofibrations.

e A functor U: D — € is called a right Quillen functor if 4 is a right adjoint
and preserves fibrations and trivial fibrations.

e An adjunction

(3:6-9, wo-%  ¢:9E-)>E-Y)
is called a Quillen adjunction if § is a left Quillen functor.

Remark 5.34. Some immediate facts can be deduced:

e By Ken Brown’s Lemma 5.17 every left Quillen functor preserves weak
equivalences between cofibrant objects. Dually, every right Quillen functor
preserves weak equivalences between fibrant objects. Thus a left Quillen
functor §: € — 2 induces a functor Ho§: Ho%. — HoD. Analogously, a
right Quillen functor {: & — & induces a functor Hoil: HoZ; — Ho@.
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e If we have a pair of Quillen adjunctions (F,4,¢): € > D and (F, W, ¢"): D —
&, then we can define their composition to be the adjunction
(35:6-8 wiEs-% o)
where ¢’ is the composite natural isomorphism with components
€(§'5c,e) 2> D(Fe,We) —2> E(c, Uile)

Composition of (Quillen) adjunctions is associative and has units.
o If (F,4,0): € > D is a Quillen adjunction, then

(%7 u’ SD)OP = (u7 8’7 Lpil) : gop - (-gop
is a Quillen adjunction.
e Let (§,4, ) be an adjunction € — P as above. The triple (§,4, ¢) is a

Quillen adjunction if and only if 4l is a right Quillen functor. Indeed, we
have equivalent lifting problems:

F(domf) ——— domg domf ——— $(domyg)
e a
) N g — 7 N Uy
F(codf) ——— codg codf ———— 4(codyg)

So for example, if Ff € Cofy for all f € Cofg, then §f has the LLP with
respect to all g € Fibg. Thus by using the adjunction, {lg has the RLP
with respect to all f € Cofg, and hence ilg € Fibg for all g € Fibg, as
wanted.

We then also have a good notion of equivalence of model categories:

Definition 5.35. A Quillen equivalence of two model categories € and 9 is a

Quillen adjunction

I S
€ 1 Quillen D
I
such that for every cofibrant object ¢ € € and every fibrant object d € 9, a
morphism ¢ — 4d is a weak equivalence in € if and only if §¢ — d is a weak

equivalence in 9.
5.4. Important Model Structures.

5.4.1. Quillen Model Structure. There are several model structures on the category
of simplicial sets. The standard one is usually referred to as the Quillen model
structure.

Definition 5.36. The classical model structure or Quillen model structure on the
category of simplicial sets has the following distinguished classes of morphisms:
e Cofibrations are given by all monomorphisms f: X — Y ie., f,: X, —
Y,, is an injection for all n € N.
o Weak equivalences are weak homotopy equivalences, i.e., morphisms whose
geometric realization is a weak homotopy equivalence of topological spaces.
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e Fibrations are given by Kan fibrations, i.e., maps f: X — Y which have
the RLP with respect to all horn inclusions

A — X

\[ A Jf

A Y
forall1 <k <n.

In order to accentuate that we consider sSet endowed with the Quillen model struc-
ture, we shall sometimes write sSetQuitlen-

Remark 5.37. Let us deduce some consequences of the previous definition:
e Fibrant objects in the Quillen model structure are exactly Kan complexes:

A — X

[

A" —— A
e A morphism f: X — Y of fibrant simplicial sets i.e. Kan complexes is a
weak equivalence if and only if it induces isomorphisms on all simplicial

homotopy groups.
e All simplicial sets are cofibrant with respect to the Quillen model structure.

5.4.2. Classical Model Structure on Top.

Definition 5.38. The classical model structure or Quillen model structure on Top
has the following distinguished classes of morphisms:

o Weak equivalences are the weak homotopy equivalences.
e Fibrations are constituted by Serre fibrations:

i %l
Fib = 7, = ({pm & prxcr} )
neN
The following result holds:
Theorem 5.39. The adjunction

SsetQuillen L TOpQuillen

constitutes a Quillen equivalence.
This will become important once we talk about co-groupoids.

5.4.3. Thomason Model Structure. The following is based on the Nlab articles
Thomason model structure and Geometric realization of categories.

The category of small categories Cat may also be endowed with a suitable model
structure. For its construction one uses the fully faithful nerve embedding

I: Cat — sSet
along with geometric realization
| — |: sSet — Top
Definition 5.40. The composition of functors
[91(—)|: Cat — Top, € — NG|

is referred to as geometric realization of categories.


https://ncatlab.org/nlab/show/Thomason+model+structure#definition
https://ncatlab.org/nlab/show/geometric+realization+of+categories
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Remark 5.41. By the homotopy hypothesis geometric realization of simplicial sets
constitutes a Quillen equivalence between the homotopy theory of simplicial sets
and the homtopy theory of topological spaces. In particular, for a category € the
simplicial set ME is a model for an oo-groupoid (or Kan complex), since it doesn’t
make a difference if we take the geometric realization of Q1€ or of any fibrant
replacement thereof, since these will be homtopy equivalent, e.g.,

IEx®(NE)| ~ |MF|

Recall the barycentric subdivision functor sd and its right adjoint Ex from Ex-
ample 2.32.

Definition 5.42. The Thomason model structure on Cat, denoted Catrnomason; 1S
given by:
e A functor §: € — D is a Thomason fibration if and only if Ex*0N(F): Ex*N(%) —
Ex’N(D) is a trivial Kan fibration.
e A functor §: € — D is a Thomason weak equivalence if and only if
NG: NE — NE is a weak equivalence in the Quillen model structure
on sSet.

Proposition 5.43. The Quillen model structure on sSet is Quillen equivalent to
the Thomason model structure on Cat which is witnessed by the Quillen equivalence:

hsd?

SsetQuinen €L CatThomason
Ex20

Proposition 5.44. For a category €, let V& be the poset category of 1-simplices
in the nerve NE ordered by inclusion. Then we have

N(VE) =~ [ NF|
Another important result is the following;:

Theorem 5.45 (Quillen Theorem A). Let €, D be categories and let §: € — D be
a functor. If for all d € D the geometric realization |N(F/d)| of the comma category
§/d is contractible, then

NS : NE — ND
is a weak homotopy equivalence.

For even more results and references see the Nlab article Geometric realization
of categories.

5.4.4. Model Structures on Functors. There are two canonical ideas to put model
structures on 2% for @ a model category and € a small category.

Definition 5.46. Denote by 2% = [€, 2] the functor category of functors € — 2.

e The projective weak equivalences or projective fibrations are those natural
transformations which are objectwise weak equivalences or fibrations in
D.

e The injective weak equivalences or injective cofibrations are those natural
transformations which are objectwise weak equivalences or cofibrations in
D.

e This gives rise to two different model structures on 2%, if these exist,
which we write as 9;)6;03‘ and gflj. The first of these is referred to as
the projective model structure and the latter is called the injective model
structure.


https://ncatlab.org/nlab/show/geometric+realization+of+categories
https://ncatlab.org/nlab/show/geometric+realization+of+categories
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5.4.5. Reedy Model Structure. There is a special kind of category, referred to as
Reedy category, which always ensures the existence of a model structure called the
Reedy model structure on the functor category €% for # a Reedy category and €
a model category.

Definition 5.47. A Reedy category is a category & with two wide subcategories
RT and X~ and a total ordering, defined by a degree function deg: Ob&# — a,
where « is an ordinal number, such that
e Every non-identity arrow in #7 raises degree.
e Every non-identity arrow in &~ lowers degree.
e For all objects f € % there exists a unique f* € (%+)[1] and a unique
f~ e (%)M such that f = f+f—.

Example 5.48. The simplex category A constitutes a Reedy category:
e The degree function is given by
deg: ObA — N, [n] — n
e A morphism [k] — [n] is in A" if and only if it is an injection.
e A morphism [k] — [n] is in A~ if and only if it is a surjection.
By switching At and A™, we may also realize A°" as a Reedy category. In fact,
switching Z% with #~ yields a Reedy category #°P for any Reedy category &.

Theorem 5.49. If R is a Reedy category and € is a model category, then there is
a canonical induced model structure on the functor category €%, denoted %geedy,
in which the weak equivalences are the objectwise weak equivalences in €.

If the model category € is nice enough we have the following:

Theorem 5.50. Let € be a combinatorial model category and let R be a Reedy
category. Then identity functors induce Quillen equivalences

(g@

proj

1 Quillen (gfglzeedy 1 Quillen %IZZ]

For more details see the Nlab page Reedy model structure.

5.5. Derived Functors. This subsection is based on the corresponding chapters
in [34] and [19].

We will define homotopy (co)limits as derived functors of a homotopy Kan exten-
sion that satisfy a universal property: the homotopy (co)limit functor is universal
among homotopical approximations to the strict (co)limit functor. Let & be a cat-
egory with weak equivalences and let @ be a small diagram category. Then €7
canonically turns into a category with weak equivalences by taking the weak equiv-
alences to be those natural transformations which are objectwise weak equivalences
in €. Let |: @ — x be the unique functor into the terminal category. Then we get
the well known adjunction from Example 3.7:

colim=Lan,
y — L T
S —

lim=Ran,

We will see that the globally defined homotopy limit and colimit are accordingly
the left and right homotopy Kan extension along !: & — *.

Definition 5.51. A homotopical category is a category € equipped with a wide
subcategory W (W has the same objects as €) such that %" satisfies the 2-out-of-6
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property: For any composable triple of arrows h, g, f if hg and gf are in 7', then
so are f,g,h, and hgf. More diagrammatically,

f
e — e

/

g

Wgf nacr _ f,g, h’ hgf /A
hgf

Remark 5.52. Tt is noteworthy that the 2-out-of 6 property is stronger than (and
therefore implies) the 2-out-of 3 property. Still, it is shown, see [34] Remark 2.1.9,
that the weak equivalences of any model category satisfy the 2-out-of 6 property.
Thus any model category has an underlying homotopical category.

Example 5.53. Any category may be considered as a homotopical category by
simply regarding the underlying minimal homotopical category taking the weak
equivalences to be the isomorphisms in our category. Indeed, the class of isomor-
phisms satisfies the 2-out-of 6 property: For composable h, g, f such that ¢gf and hg
are isomorphisms the map g has a left inverse f(gf)~!. As hg is an isomorphism
g is monic and thus f(gf)~! must also be the right inverse of g. Thus g is an
isomorphism, which already implies that f,h and hgf must also be isomorphisms.

Definition 5.54. A functor §: € — 2 between homotopical categories is said to
be homotopical if it preserves weak equivalences, that is, §(#%) € Wo.

Remark 5.55. By the universal property of the corresponding localizations, a ho-
motopical functor §: € — 9 induces a unique functor

@ 8 P
e Yo
%[W%il] IOC(’}@S) 4 %[ngl]

commuting with the localizations.

Remark 5.56. Let € and 9 be homotopical categories. The universal property of
the localization functor y¢: € — €[, '] is 2-categorical: A natural transforma-
tion ¢: § — §’ between homotopical functors € — & descends to a unique natural
transformation loc(y5() : loc(v9§) — loc(y5F’). Conversely, a natural transforma-
tion between functors €[y, '] — D[W, '] descends to a natural transformation
between functors € — P[%,, '], but it might not be possible to lift this natural
transformation along vg: @ — D[, '].

Example 5.57. Any functor §: € — € equipped with a natural weak equivalence
to or from the identity functor is homotopical: Indeed, if § = 1 is a natural weak
equivalence, then any weak equivalence f is mapped to a weak equivalence §f by
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the 2-out-of 3 property:

Fdomf —=—— domjf
Sf f

Fecodf ———— codf

As a specific example, consider the functor that maps a space X to the cylinder X x
I, where I = [0, 1]. This functor is homotopical, because the canonical projections
X x I 5 X are natural weak equivalences.

Many interesting functors between homotopical categories are not themselves
homotopical however. What are we to do in such situations? Derived functors
are defined to be the closest homotopical approximations of a (non-homotopical)
functor between homotopical categories:

Definition 5.58. Let € and 9 be homotopical categories with wide subcategories
Wy and Ws, respectively, and let F: € — D be a functor. Denote by €[%; ']
and D%, '] the corresponding localizations (homotopy categories) as defined in
Definition 5.18.

e The total left derived functor LF: €[W, '] — D[W,, "] is defined to be
the right Kan extension of 75§ along ~v¢:

¢ —S 922 9w,

e -

-

e The total right derived functor R: €[y '] — D[W;, '] is defined to be
the left Kan extension of vgF along ~e:

) R I

G S -

Remark 5.59. By the universal property of v¢, the functor L§ may be considered
as a homotopical functor L§: € — 2[%,,'].

Definition 5.60. Let € and & be homotopical categories, and consider a functor

F:6 — 2.
o A left derived functor of § is a homotopical functor LF: € — 2 equipped
with a comparison natural transformation (: LF — § such that

(10009 L3): G711 > D751, 9C: 19LT - 19F)



constitutes a total left derived functor of §:

¢ —S— 2 2 9w, ¢ —3— 2 22 9[w,
A X sl 7
% - 72 -
e ’ng //// _ e ////// /////
7 -7 loc(v9LF) s LS
//// > - /////, -
€[, €7 ]

o A right derived functor of § is a homotopical functor R§: € — 2 equipped
with a comparison natural transformation (: § — RF such that the data

(loc(ngs), Y2C: Y28 — ’Y@Rs)

constitutes a total right derived functor of §:

s 12 - 5 Yo _
€ 2 (W5 € 2 (W,
////// - 3 /// /// - >
e Yol T = Yo ya Pl
P <" loc(v9RF) ya -7 RE
//// /// ///// ///
V e v e
—1 —1
A/ Clwy ]

Remark 5.61. The functor loc(y5LLF) in the above definition might seem confusing.
However, after precomposing with y¢ we get

loc(voL§)ve = volL§

yielding a natural transformation
Y2¢: loc(vaL§)ve — 128

Remark 5.62. After having had a look at the above definitions, we immediately
realize that total left and right derived functors are unique up to unique isomor-
phisms (these are just Kan extensions after all). On the other hand, how about
uniqueness for left and right derived functors? The expectation of course is that
these are uniquely determined up to weak equivalence. This is indeed the case: If
L§ and IﬁS are two left derived functors for §, then

loc(v9LF) = Ran,,yo§ = loc(v9L3)

and therefore we have a natural isomorphism ygL§ =~ 'y@IES, which makes pre-
cise what we mean by uniquely determined up to weak equivalence, since, if € is
saturated (any model category is saturated), that is, any isomorphism in the lo-
calization of 2 is induced by a weak equivalence (this in particular concerns all
the components of the above natural isomorphism), then the above natural isomor-
phism descends to a natural weak equivalence. There is a second question that one
might want to ask. Namely, what if §: € — 9 is already homotopical. Then, since
(total) left and right derived functors are thought to be the closest homotopical
approximations to §, they should better agree with §. We postpone answering this
question (see Corollary 5.67).

There is no guarantee for derived functors to always exist in general. However,
there is a quite broad setting in which derived functors exist and admit simple
constructions.

Definition 5.63. Let € and 2 be homotopical categories.
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A left deformation on € consists of a functor L: € — ¥ together with a
natural weak equivalence [: L = 1g.

A right deformation on € consists of a functor R: € — € together with
a natural weak equivalence r: 1l¢ — R.

Remark 5.64. Let us point out some subtleties:

If € admits a left deformation L, then L is homotopical. This follows from
Example 5.57. If €, is any full subcategory of € containing the image
of @, then the inclusion €;, — € and the left deformation L: € — 6,
induce an equivalence of categories between €[%;, '] and €1, [#%']. This
follows along the same lines as Proposition 5.25. Analogously, if € admits
a right deformation R, then R is homotopical and any full subcategory
®r containing the image of R gives rise to an equivalence of categories
G, '] = Cr [W%;l]

The notion of left and right deformation are inspired by cofibrant and
fibrant replacement functors L, R: € — € along with their natural weak
equivalences [: L = 1g and 7: 1g —> R which always exist if € is a model
category. Therefore, any model category gives rise to both a left and a
right deformation.

Definition 5.65. Let & be a homotopical category.

A left deformation for a functor §: € — 2 between homotopical cate-
gories consists of a left deformation L for & such that § is homotopical
on an associated subcategory of cofibrant objects, i.e., § is homotopical
on €1, where €, is any full subcategory containing the image of L.

A right deformation for a functor §: € — P between homotopical cate-
gories consists of a right deformation R for € such that § is homotopical
on an associated subcategory of fibrant objects, i.e., § is homotopical on
G r where G is any full subcategory containing the image of R.

Theorem 5.66. Let € and & be homotopical categories.

If §: € — D has a left deformation 1: L = lg, then Ly = FL is a left
derived functor of § with comparison natural transformation §l: §L — §.
If§: € — D has a right deformationr: 1¢ —> R, then RF = R is a right
derived functor of § with comparison natural transformation §r: § — §R.

Proof. We have to show that for any functor il: €[%, '] — D[#,, '] and any
natural transformation a: v — Yo F there exists a unique morphism o’: 4 —
loc(ya§L) such that

g ——— 9%
o/ | Yo Fl
YoSL

commutes. Existence of such a morphism o’ is deduced as follows: The functor
iy is homotopical and therefore Ungl: UveQ — LUyg is a natural isomorphism.
Naturality of o implies commutativity of the diagram

g (c) ——— 153(c)
u"/%’(IC) '79'37(ZC)

e (Le) ——— 128(Le)
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which in turn yields that « factors through v5FL as

yg ——— 9%

e

o' ve u’)kgL
‘ \ Yo 3§l

alL
1
|

o

YoS8L

where o is defined by loc(aL(4y%l)~1). Suppose now that we have yet another
morphism 3: 4 — loc(ygFL) such that (vg§l)Bve = «. We first note that SL
is uniquely determined: Since § is homotopical on any full subcategory of cofi-
brant objects €, §IL is a natural weak equivalence. Thus vy5F¢Q@ is a natural
isomorphism. Naturality implies commutativity of the diagram

BL
gL ———— 195L?
Ugl | = >~ yuF Ll

the ———5— 1981

which in turn yields uniqueness of 3, since the vertical morphisms are isomorphisms.
O

Corollary 5.67. If§: € — D is a homotopical functor between homotopical cate-
gories, then both the left and right derived functors L§ and R of § exist and they
both agree with § up to weak equivalence.

Proof. Since §: € — 9 is already homotopical, the identity functor lg: € — € is
both a left as well as right deformation for §. Hence

Ly ~ § ~ RF
O

Lemma 5.68. Let §: € — D be a functor between homotopical categories.
o If T is left deformable, then its total left derived functor is an absolute left
Kan extension.
o If§ is right deformable, then its total right derived functor is an absolute
right Kan extension.

Proof. The argument is along the same lines as in Theorem 5.66: Let £: %[ng] —
& be any functor. We have to show that

5 R -1 £ 5 9 -1 £
@ 2 o] 2y % 2 o] 2y E
£vg %2 ,,/”/// _ ///,//// ///,/”/
e % 7 "7 Lloc(15FL) = e =7 Rany (£128)
A €7y ']
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So let 4: €[#;, '] — & be a functor along with a natural transformation a: Uy —
£955. The map Uvygl is a natural isomorphism and hence by naturality of a we
observe that « factors through £v4FL as

gy ————— £19F

."(117%1)71

v

o’ ve Uvg L

al
1
|

o§

L98Q
Showing uniqueness of o’ is analogous as in the proof of Theorem 5.66. O
Lemma 5.69. Consider a pair of functors
/IR S N
o [f the right Kan extension Rany§ of § along 3 exists and is absolute, then
&(RanygF,e): 2°° — Set

is an absolute left Kan extension of &(F,e) along iL.
o [f the left Kan extension LanyF of § along U exists and is absolute, then

&(e,LanyF): & — Set
is an absolute right Kan extension of &€ (e,§) along L.

Proof. Since RanyF is assumed to be absolute, the functor 2(—,e): 2 — Set’?
sends Rang§ to a right Kan extension in Set°?. Hence, by duality, Rang§ is taken
to a left Kan extension of &(§, e) along 4 in Set. O

The proof of the following result is based on [20] (for an alternative proof which
does not use the (co)end calculus, see [27]):

Theorem 5.70. Let € and & be homotopical categories and let

5
‘4 1 D
I

be a pair of adjoint functors. If § admits an absolute total left derived functor LF
and U admits an absolute total right derived functor R, then the total derived
functors form an adjunction between the corresponding localized categories:

L§

€7 ] L 275"

R4
Proof. Let us write G« := €[ '] and D. := D[7,']. In the following calcu-
lation we make heavy use of Proposition 3.5, since all Kan extensions involved are
absolute and therefore, in particular, pointwise:

2 (L§vec v9d) = Lan, (2.(72F,72d))(1ec)

Lemma 5.69

ce®

lle

G- (1ec,1%c) X Du(V25¢, Yad')
ce® deD

| #-tec e (| 2500 x 22 (ad 2ad))

12
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CEC deD
J B (16, 1ec) X E(c,Ud) x D (yad, yod')

lle

deD
j G~ (e, velld) x D (v9d, yod')

= Lan,, (8~ (ve¢, 7e)) (vad')
G~ (1ec, Rilygd')

I

>~
Lemma 5.69

O
Corollary 5.71. Let € and @ be model categories. Then any Quillen adjunction
S
€ 1 D
o
induces a derived adjunction
L§
Ho® 1 Ho<
R4l

Proof. The functors § and 4 are left resp. right deformable by Remark 5.64 and
therefore admit total derived functors by Theorem 5.66. These total derived func-
tors are absolute by Lemma 5.68. Theorem 5.70 then immediately implies the
claim. 0

Remark 5.72. In fact, it is not needed that the functors § and 4, in Corollary 5.71,
form a Quillen adjunction. Theorem 5.70 implies the same claim by just demanding
that § is homotopical on the subcategory of cofibrant objects, while il has to be
homotopical on the subcategory of fibrant objects.

One then obtains a neat characterization of Quillen equivalences:
Proposition 5.73 ([19] Proposition 1.3.13). A Quillen adjunction (F,4,¢): € —
D is a Quillen equivalence if and only if The induced adjunction

LF
Ho® 1 Ho9
R4(

is an equivalence of categories.

5.6. Model Categories with extra Structure. The following chapter is based
on the Nlab-entry derived hom-functor.

We have seen what constitutes a model category and what it means for a cate-
gory to be (symmetric) monoidal. Merging these two notions to obtain a concept
of monoidal model category should result in a symbiosis of the monoidal structure
with the model structure. Roughly put, a monoidal model category should be a
model category which is also a closed monoidal category in a compatible way. Be-
fore getting to the precise definition let us briefly introduce a necessary preliminary
notion:

Definition 5.74. Let ®: & x & — &3 be a functor and suppose &3 has pushouts.
For morphisms f in & and f’ in &,, the pushout product fOf’ is the morphism

(domf ® codf’) 11 (codf ® domf') ——— codf ® codf’
dom f®dom f’
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out of the pushout induced from the commuting diagram

dom f ® dom f/ T8 Loms! cod f @ dom f’
laomf®f’ i
! leoas®f
domf ® codf’ ----------- > domf ® codf’ 11 codf ® dom f’

dom f®@dom f’

Tty

1, ’
f®Loay codf ® codf’

Since model categories are cocomplete (and complete), they allow for pushouts.
Therefore, the pushout product for a pair of morphisms in € is well-defined.

Definition 5.75. A symmetric monoidal model category is a model category €
equipped with a closed symmetric monoidal structure (€,®, 1, A, p) such that the
following compatibility conditions are satisfied:

e Pushout-product axiom: For any pair of cofibrations f and f’ in € their
pushout-product fOf" with respect to the tensor functor ®: € x € — €
is itself a cofibration, which, furthermore, is trivial if f or f’ is trivial.

e Unit aziom: For every cofibrant object X and every cofibrant resolution

L1 - 1 of the tensor unit 1, the resulting morphism

[IX —®% jox —= X

is a weak equivalence.

Remark 5.76. Some remarks are in order:

(i) For ¢ € € a cofibrant object, the pushout-product axiom implies that
the functor c® —: € — € preserves cofibrations and trivial cofibrations.
Indeed, assume J — ¢ to be a cofibration. Recall that the symmetric
monoidal category € is closed, i.e., — ® z has a right adjoint [x,—] and
thus preserves colimits for all objects x € €. Therefore, the diagram which
induces the map (& — ¢)df’ in the above definition of the pushout-
product map boils down to

f®1domf’
e,

(%) c® dom f’

|
1
|
|
|
|
|
|
1
|
|
|
v

& - » c®domf’

S
~

3!(\®—>C)Df/

~

>

c®codf’

since @®domf’ ~ & ~ F®codf’. Thus the (unique) induced morphism,
which by assumption is a cofibration, amounts to (& — ¢)Of' = 1. ® f.

(F—)®1coayr
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But this asserts that c® —: € — € is a left Quillen functor. In particular,
this tells us that the adjunction

c®—
—>.

€ 1 €
[e,—]
is, in fact, a Quillen adjunction.

(#) As a special case of the preceding remark, if 1 is cofibrant then the unit
axiom is already implied by the pushout-product axiom: In fact, in this
case L1 — 1 is a weak equivalence between cofibrant objects and such
morphisms are preserved by functors that preserve trivial cofibrations (this
is Ken Brown’s Lemma 5.17).

(#ii) One can actually generalize the above definition further. This leads to the
concept of a left Quillen bifunctor: Let &, &5, &3 be model categories. A
functor ®: & x & — &3 is called a left Quillen bifunctor if

e it satisfies the pushout-product axiom.
e it preserves colimits separately in each variable.

Example 5.77. Consider the category of simplicial sets sSetquilien endowed with
the Quillen model structure. Fix cofibrations (monomorphisms in our case) f and
f’ in sSetquillen and consider pushout square

domf x domf’ 1 codf x domf’
1xf’ %
domf x codf’ ---------------- > (domf x codf’) 11 (codf x domj’)

dom f xdom f’

18I =(Fx ) X F)

-
codf x codf’

We note that the pushout-product may be explicitly computed as the map (f x
DTJ(1 x f') and this map is certainly again a cofibration (monomorphism) if f
and f’ are cofibrations. For the case where f is a trivial cofibration and f’ is a
cofibration, see Proposition 4.2.8 in [19]. Similar arguments work to show that the
injective model structure (sSetgzncn)inj constitutes a monoidal model category.

We shall continue with yet another notion which builds on the previous ones.
Before doing so however, let us discuss the dual notion of the pushout-product:

Definition 5.78. Let (—,—): & x & — &3 be a functor and suppose &3 has
pullbacks. For morphisms f € & and f’ € &, the pullback-powering 21 is the
morphism

(dOIIlf, dOmf/) (COdf7 domf/) X (dom f,codf) (domf, COdf/)
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into the pullback induced from the diagram

(domf, domjf”)

(Laompsf")

(COdf7 dOHlf/) X (dom f,cod f) (domf, COdf/) 7777777777 ” (domf, COdf/)

(f’]‘domf’)

(fleoayr)

1
|
|
|
|
|
|
1
|
|
|
1
|
|
|
v

(codf,domf’)

!
Coar ) (codf,codf”)
Definition 5.79. Let 7° be a monoidal model category. A 7 -enriched model
category is a 7 -enriched category € which is both tensored and cotensored over 7
and which has the structure of a model category (the underlying category & is a

model category) such that the following compatibility condition is satisfied:
e Pullback-powering axiom: For every cofibration f € € and every fibration
f" € €, the induced pullback-powering morphism f'5/ (with respect to
the functor €(—, —): €°P x € — 7') is a fibration, which, furthermore, is

trivial if f or f’ is trivial.

Remark 5.80. The pullback-powering axiom, as in the above definition, is equiva-
lent to the copower being a left Quillen bifunctor (it satisfies the pushout product
axiom).

Any monoidal model category is in fact an enriched model category:

Proposition 5.81. Any monoidal model category is an enriched model category
over itself, via the enrichment of its underlying closed monoidal category.

Proof. In order to prove this we shall make use of the Joyal-Tierney calculus. For
this we shall use the notation

e (—)A(—) for the lifting property,
e (—)d(—) for the pushout-product,
e (—)P) for the pullback-powering.
We then have the following logical equivalences:
CofJCof « Cof <= Cof(JCof A Fib™ <« CofA (Fib™)"°f «— (Fib™)7Cf < Fib™
CofdCof™ < Cof™ <= CofCof™ [1Fib «— Cof JFib"T «— FibPe" = Fib™
CofJCof™ < Cof™ <= CoflJCof™ [ Fib «— Cof™ P FibP°f «— FibH°f = Fib

The statements on the far left constitute the pushout product axiom, while the
statement on the far right yield the pullback-powering axiom. This shows equiv-
alence of both these axioms and therefore the claim follows. For more details on
the Joyal-Tierney calculus see the Nlab Enriched model category Example 4.1. and
Joyal-Tierney calculus. U

Example 5.82. Proposition 5.81 leads to an onslaught of examples.

e The model category sSetquilien iS @ monoidal model category and therefore,
in particular, an enriched model category.


https://ncatlab.org/nlab/show/enriched+model+category
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e The injective (or projective) model structure on simplicial presheaves, that
is, (sSetgu?Hen)inj (or (sSetgu}:Hen)pmj) is a monoidal model category, and
therefore an enriched model category.

Lemma 5.83. Let € be a 7 -enriched model category.
e Ifce ¥ is a cofibrant object, then the enriched hom-functor out of ¢

C(c,—): € >

preserves fibrations and trivial fibrations.
o IfCe € is a fibrant object, then the enriched hom-functor into ¢

C(—,0): 6P >7
sends cofibrations and trivial cofibrations in € to fibrations and trivial

fibrations, respectively, in V.

Proof. Let us suppose first that ¢J — ¢ is a cofibration. Since & is tensored and
cotensored over 7 it follows that
(g(ga _) =%, %(_7*) =x
Indeed, for the first of these identities we calculate
€(J,2) =C (PR, x) =7 (J,¢(J,x)) =«

where the first isomorphism in the above chain of morphisms follows from the fact
that J®— preserves colimits (since it is a left adjoint), while the third isomorphism
follows from the fact that 7' (—, €(J, z)) turns colimits to limits. The other identity

follows analogously. Having gathered all that knowledge, the defining diagram for
fE@=4) hoils down to

€ (c,domf”)

%]

But this means that the (trivial) fibration fP(9=¢) equals f/ = G(c, f), as wanted.
O

Finally, we are ready to define a derived version of the enriched hom-functor:
Let L,R: € — ¥ be cofibrant and fibrant replacement functors along with the
corresponding natural weak equivalences [: L = 1g and r: 1 — R. The model
category €°P x € then has a fibrant replacement functor

LPxXR:EPxEC— (P xE)r=(6:.) xEs
along with a natural weak equivalence

P xr: L°° x R = 1<;gop><<g
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Lemma 5.83 along with Ken Brown’s Lemma 5.17 then shows that the enriched
hom-bifunctor €(—, —) is homotopical if restricted to the full subcategory (€°P x
%)s. Thus, €(—,—) admits a right deformation. Therefore the dual version of
Theorem 5.66 may be applied to the enriched hom-bifunctor €(—, —): €°P x € —
%, which guarantees the existence of the corresponding right derived functor:

Definition 5.84. Let € be an enriched model category. The enriched hom-functor
€(—,—): €°P x € — € admits a right derived functor

RHom: P x ¢ — €
referred to as the (right) derived hom-functor.

Remark 5.85. In the setting of cofibrant and fibrant replacement functors L, R: € —
'

RHom(X,Y) ~ €(LX,RY)
for all objects X,Y € €.
5.6.1. Simplicially Enriched Model Categories.

Definition 5.86. A cartesian closed monoidal category is a cartesian closed cate-
gory € equipped with a model structure such that the following axioms are satisfied:
e Pushout-product axiom,
e Pullback-powering axiom,
e Unit axiom.

Example 5.87. The category of simplicial sets endowed with the Quillen model
structure sSetquillen 1S a cartesian closed monoidal category.

Definition 5.88. A simplicial model category is an enriched model category where
the enriching category is given by the cartesian closed model category sSetquilien
(the category of simplicial sets endowed with the Quillen model structure).

Example 5.89. Consider the model category (sSetg:Hen)mj. The underlying cat-
egory is sSet-enriched, that is, a simplicially enriched category. In fact, this even
yields a simplicial model category.

Corollary 5.90. Let € be a simplicial model category. If c € € is cofibrant and
¢ € € is fibrant, then €(c,¢) is fibrant in sSetquinen, that is, €(c,¢) is a Kan
complez.

Proof. Follows immediately from Lemma 5.83. O

For more details and examples of simplicial model categories see the Nlab article
Simplicial model category.

5.7. Homotopy Limits and Colimits. Let us get back to the adjunction which
we had in the very beginning of 5.5:
colim=Lan,
; /\

lim=Ran,

If € is a model category (or any homotopical category really) and 9 is small, then
view € as a homotopical category with weak equivalences being those natural
transformations which are objectwise weak equivalences in €.

Definition 5.91. Let € be a model category and & be small.


https://ncatlab.org/nlab/show/simplicial+model+category#definition

e The homotopy limit functor, if it exists, is defined by the right derived
functor of 1i££n:

holim := Rlim: €2 — €
D D

e The homotopy colimit functor, if it exists, is defined by the left derived
functor of cogzim:

hocolim = L colim: €2 — &
@ @

Remark 5.92. If both homotopy limit and colimit functors exist, then by Theorem
5.70 these give rise to adjunctions

Lconst=loc (49 Lconst) Lcolim=loc(ygLcolim)
v/ L Ho® v/ L
Rlim=loc(~y#Rlim) Rconst=loc(v, Rconst)

Example 5.93. Let X; be a collection of objects in a model category & indexed
by some index set I. Their homotopy product is given as

holi ; > ;
olim X; H RX;
el
for a fibrant replacement functor R: € — €. Analogously, their homotopy coprod-
uct is given by
hocoli ; o~ ;
ogglhm X; H LX;
el
for a cofibrant replacement functor L: € — 6.

5.7.1. Homotopy (Co)continuous functors. Just like for ordinary limits and colim-
its, there should exist a notion of (homotopy) continuity and cocontinuity.

Definition 5.94. Consider the homotopical category €7 (with objectwise weak
equivalences) and suppose we are given a functor §: € — €', where €,%’ are
homotopical categories.

e The functor § is said to be homotopy continuous, if § preserves homotopy
limits, that is, for each il € €2 we have
holi ~ holi
3( o@nnﬂ) oglm(gﬂ)

e The functor § is said to be homotopy cocontinuous, if § preserves homotopy
colimits, that is, for each { € €2 we have

S(hocgghm i) ~ hocg(z)hm(gil)

Proposition 5.95 (Proposition 4.10 [1]). Left derived functors of left Quillen func-
tors preserve homotopy colimits and right derived functors of right Quillen functors
preserve homotopy limits.

Proof. Suppose we are given a Quillen adjunction

5
€ L D
I

then we get an induced Quillen adjunction

3:* j
1 @inj
[T

€’

inj

Ho®
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We may therefore look at the commutative diagram of left Quillen functors

S S '

Gy —— Dy
const const

€ e D

which induces a commutative diagram
7 L3. 7
Ho€;; ————— Ho9y;
Lconst Lconst

Ho® i3 Ho2

which yields commutativity of the diagram of right adjoints

7 RiL, 52
Ho%;,; HoZ;,;
holim holim
S s
Ho® Ril Ho2

which verifies that right derived functors of right Quillen functors indeed preserve
homotopy limits. The other case is formally dual. U

5.8. Homotopy (Co)Ends. The following is based on [2].

Recall the adjunction from Remark 2.26 along with the dual statement about ends:

2 I =2(-,-)0-
§ P(=,-)
LT *D L 4 4 1
I =2(—,—)h— §
PD(—,—) 2

By the end of this section we will have established the end as a right Quillen functor
(nice pun, eh?) and thereby laying the groundwork for the notion of a homotopy
end, i.e., the right derived functor of {. Let us start more generally and consider

the following adjunction:

from Proposition 3.2, where we altered the notation considerably: i, := Lang and
i, = Rany. Recall from chapter 5.4 that the functor category €Z, where % is
a model category and @ is any category, may give rise to two canonical model

structures, which may or may not exist:

2

broj» Where weak equivalences and fibra-

e The projective model structure €
tions are defined componentwise.

e The injective model structure %{%j,

tions are defined componentwise.

where weak equivalences and cofibra-

%EZOP XD
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Proposition 5.96. Let € be a category, and h: D — D' be a functor. The
adjunctions

u' ’ ’ u*
P T D D —> D
proj % (gproj inj <7 %mj
i Uy

both constitute Quillen adjunctions, if the respective model structures ezist.

Proof. We only need to verify that * both defines a left as well as right Quillen
functor. But this is immediate, since, for example, if ¢ is a fibration in %*@r/oj
then the resulting natural transformation £*¢) = 14l has only fibrations of € as
components. Therefore, 1*1) is a fibration. O
Definition 5.97. Let € be a model category and let &, 2’ be categories.

e A (trivial) simple projective cofibration is a morphism in €2 of the form

[T £+ ] domf— ][] codf
2(d,—)  2(d,—) 2(d,~)

for some (trivial) cofibration f in € and some object d € D.
e A (trivial) simple injective fibration is a morphism in €< of the form

[T = J] domf— [] codf
2(—d)  D(—.d) P(—,d)
for some (trivial) fibration f in € and some object d € 9.
The names given in the above definitions are justified by the following:

Corollary 5.98. Let € be a model category, and let 4: D — D' be a functor.
o Any (trivial) simple projective cofibration is a (trivial) cofibration in Cgproj
o Any (trivial) simple m]ectwe ﬁbmtzon is a (trivial) fibration in ‘gml

o The left Kan extension Ll : pmJ — %pmj preserves (trivial) simple pro-
jective cofibrations, that is,

U( H f) = H f
P(d, ) 9/ (31d,~)

e The right Kan extension i, : ‘ng — %%J preserves (trivial) simple injec-
tive fibrations, that is,

Hf ﬂf

9(— —ud)
Proof. Fix some object d € @ and consider the inclusion functor {d} <> @ of the
subcategory {d} with only one object. By Proposition 5.96 the left Kan extension
L ‘géﬁj =€ — %goj is left Quillen and therefore preserves (trivial cofibrations).
Hence, for a (trivial) cofibration f in € the morphism
{d}
uf = 19( H f
2(d,~
is a (trivial) cofibration. Moreover, applying Kan extensions to the diagram
{d} ——— 92
! J
Ud} —— @’

and using that Kan extensions respect compositions yields the remaining claim
about simple projective cofibrations. The remaining claims follow by duality. O
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Corollary 5.99. Let const: € — €7 be the constant diagram functor.
o If G2 . exists, then

proj
9 colim
G roj L €
const
is a Quillen adjunction.
o If %%j exists, then
const @
€ L G
lim
s a Quillen adjunction.
Proof. Apply Proposition 5.96 to the functor @ — *. O

Finally we are ready to prove the following:

Theorem 5.100. Let € be a model category and D be a category. Regard €2 *?
as a model category in any of the following ways (provided these model structures
exist):

° (‘g@“pxg — ((g@(’p)g

proj/inj
DPXD _ D \D°P
* % - (%proj)inj
DPXD _ pDPxD :
¥ = CRecay U D 15 Reedy.

Then the end functor

J N e
D
is a Tight Quillen functor.

Proof. We shall only prove the result for the case €2°"*? = (€2.")2.. The second

proj/inj*
case then follows by duality and the third case is shown in [2] Theorem 4.1. Tt
suffices to check that the left adjoint

R

takes (trivial) cofibrations in € to (trivial) cofibrations in (%i%rz')%j' If fisa
(trivial) cofibration in €, then the map

]_[ f: H domf — H codf
9(717) 9(717) 9(777)
must be a projective (trivial) cofibration objectwise. However, for a fixed object
d e 9, the map
9(77‘1)

is a simple (trivial) projective cofibration in €2°" and therefore the claim follows
from Corollary 5.98. U

fio ] domf— J] codf
D(—,d

) 2(—d)

Recall the following definition:

Definition 5.101. Let &, &5, &3 be model categories.
e A functor ®: & x & — &3 is called a left Quillen bifunctor if
— it satisfies the pushout-product axiom.

— it preserves colimits separately in each variable.
e A functor (—,—): & x & — & is called a right Quillen bifunctor if
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— it satisfies the pullback-powering axiom.
— it preserves limits separately in each variable.

Lemma 5.102. Let &1,&, and &3 be model categories.
o Any left Quillen bifunctor ®: & x & — &3 gives rise to left Quillen
functors e @ —: & — &3 and — R ex: & — &3 for all eq € & and for all
€9 € %2.
o Any right Quillen bifunctor (—, —): & x & — &3 gives rise to right Quillen
functors (e1,—): & — &3 and (—,e2): & — & for all e € & and for all
ey € &y.

Proof. The same arguments as in Remark 5.76 work to show that any left Quillen
bifunctor indeed gives rise to two functors e; ® — and — ® es which both preserve
cofibrations and trivial cofibrations. These two functors then furthermore fit into an
adjunction since the are both cocontinuous (by assumption). Indeed, by Theorem
3.10 it suffices to check that Lan., g1 and Lan_g.,1 both exist and are preserved
by e1 ® — and — ® es, respectively. Existence follows immediately from the fact
that model categories are cocomplete by definition. Preservation is a quick coend
calculation:

e1 ®@Lan, g1 =¢; ®J%3(61 ®e,—)Oe
~ Jel ® (&3(e1 ®e,—)De)

~ J%g(el Re,—)O(e1®e)

= Lanel®_ (61 ® —)

Analogously for — ® es. This proves that both e; ® — and — ® ey are left Quillen

functors. The claim regarding right Quillen bifunctors follows formally by duality.
O

For € a combinatorial simplicial model category (€ is nice enough) and &
any simplicially enriched category the projective and injective model structures on
% both exist and each of these themselves come equipped with a combinatorial
simplicial model structure. This ensures the existence of cofibrant replacement
functors

Lproj: €20; — G2 Linj: 62 — €7

proj proj’ inj inj
That € is a simplicial model category moreover ensures that it is tensored over sSet
®: € x sSet - €
and that the tensoring is a left Quillen bifunctor.

Proposition 5.103 (Remark A.2.9.27 in [25]). Suppose that € and D are combi-
natorial model categories and let F be an arbitrary small category.

o Then any left Quillen bifunctor ®: € x D — & induces left Quillen bi-
functors
' '
J-@-;%liojxng”—»%, f—@-;%ijx9f°"—>%

inj proj
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o Then any right Quillen bifunctor {—, —}: € xPD — & induces right Quillen

bifunctors
J{—,—}: ©Jo; X Diro; — &, f{—, —} @l x 2] — &
S J

Proof. The above functor is certainly cocontinuous in each of the two variables (by
assumption). Therefore, it suffices to prove that any projective cofibration f in

%f

oroj and any injective cofibration f'in 27" the induced map

inj

S S S
(3) J-domf®c0df’ H JCOdf@dOmf/ fos J-codf®codf’
{ dom f®dom f’

is a cofibration in & which is trivial if either f or f’ is trivial. It suffices to check
this (see [25]) that this holds for all simple projective cofibrations f of the form

But then the arrow (3) boils down to
(4) (c®codf'(j)) [ (¢ @domf'(j)) — ¢ ®codf'(;)
c®dom f(j)
since, for example,
jes

%( J I f®codf'(3)»6)
)

7G.3

lle

| &1 cocoarie

Gey T

= [ Set(7.3), Ble@eodf ().e)
jes

~ Set” (£(j,—), €(c®codf’ e))

>~ &(c®codf’(5),e)
and therefore

jef
H c®codf'(§) = e® codf'(j)
7 (3.9

and analogously for the other components in equation (3). But then (4) readily
shows that if f is a cofibration in € and the map domf’(j) — codf’(j) is a cofibra-

tion in 9, the fOf’ is a cofibration in & (since ® is a left Quillen bifunctor) which
is trivial if either f or f’ is trivial. The remaining claims may be found in [36]. O

Theorem 5.104. Let € be a combinatorial simplicial model category and let O: sSet x
€ — € and {—,—}: sSet®? x € — € denote the tensoring and cotensoring of €
over sSet, respectively.
e The homotopy colimit of §: D — € is given by
2

%
[ 2050 © Lines ) = hocglim = [ Lynos(x) © Lug(3)

where Lpoj and Linj are cofibrant resolutions for the respective model
structures (note that Linj on the far left is not the same as Liyj; on the
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. . 901’
far right since the first corresponds to the model category sSety,; and the
second corresponds to %IHJ simalarily for Lpwo; and below).
e The homotopy limit of §: D — € is given by

f {(Bug (3). Ring(§)} ~ holim § ~ f {Rprog (). Ronos (3}

where Rinj and Rpyroj are fibrant resolutwns for the respective model struc-
tures.

Proof. We have
E(»OX,Y) =~ Map(x,6(X,Y)) =~ €(X,Y)
for all X,Y € € (where Map(—, —) is the internal hom in sSet) and hence
*O—x=1g

From this we immediately infer that {»® (—) = coglzim. Since this is a left Quillen

functor, we may derive it to find:

) @
hocgglim = LJ* o) = J* © Linj(—)

[re0)

is a left Quillen bifunctor (by Proposition 5.103), the weak equivalence Lypyoj(*) — *
induces a natural weak equivalence
2 2

prroj(*) O Linj(—) ~ J* © Linj(—)

by Ken Brown’s Lemma 5.17. Since homotopy colimits are unique up to a con-
tractible choice, that is, up to weak equivalence, this yields the claim:

But then since

hocglim ~ JLproj (*) © Linj(—)
O

Corollary 5.105. Every simplicial set X € sSet is the homotopy colimit over its
cells. More precisely, for a simplicial set X we may consider the bisimplicial set
const(X) which is given by the composition of functors

A°P X Set

const(X) \\\)1 /

sSet

where m: A — * is the unique functor into the terminal category and w* is the
induced precomposition functor Set* =~ Set — sSet. If then sSethp is endowed
with the injective model structure (with respect to the Quillen model structure on
sSet ), then the homotopy colimit over const(X) is weakly equivalent to the original

simplicial set X :

hogg})im const(X) =~ X
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Proof. We have
A°P
hogolim const(X) ~ f L(*), © X,

where L(x): A — sSet is a cofibrant resolution of the point *, that is, L(x), — %
and L(x), is cofibrant for all n € N. But the Yoneda embedding &k A: A — sSet is
such a cofibrant resolution: The cofibrancy condition is clear, since any simplicial
set is cofibrant. For the claim about the objectwise weak equivalences we note that
there is a unique morphism A™ — x for every n. For the corresponding homotopy
groups we then have

Te(JA" |, 2) — (%, %) = {0}

which is an isomorphism for all £k € N. Thus A" > x for all n. Putting all the
pieces together we therefore obtain
A°P

hog(gll)im const(X) ~ J A"OX, =X
(]

5.8.1. Bar and Cobar Construction. The following chapter is based on the corre-
sponding section in [34].

The preceding formulas for homotopy limits and colimits do not seem very ap-
pealing. Calculating these Kan extensions concretely is nigh impossible. However,
there are wondrous mathematical machineries that one may employ at this point.
These are called the bar and cobar constructions.

Definition 5.106. Let € be a simplicially enriched tensored and cotensored cate-
gory.
o The two-sided simplicial bar construction for small diagram functors 4l: P°P —
sSet and §: @ — € is a simplicial object Bo(4, D,§) in € whose n-
simplices are defined by the coproduct
Bn(4,2,8) = ] UsnOFs0
segln]
e The bar construction is the geometric realization of the simplicial bar

construction
A°P

B,9.5) = B 2.9 = [ A"0B,49.5)
Remark 5.107. The unique maps A™ — * collect into a natural transformation

& A — *. Applying the functor
ACP

O Bui,2,5) = J () ® Ba(1,2.5)

induces a map

D
B(,9,3) - U0y § = ju@s

where the codomain of this map is referred to as the functor tensor product of U
and §. In this sense, the two-sided bar construction is a fattened up version of the
functor tensor product.
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Example 5.108. If € = Set, then B.(*,2,*) boils down to the nerve of the
category 9, that is,
Bu(x,2,%) = || xOox=9M"M =99,
sepln]

Example 5.109. Let G be a group and counsider it as a one-object category. The
classifying space of G, commonly denoted BG, is defined to be the geometric real-
ization of the simplicial object By, (x, G, *) = G™.

Example 5.110. We may consider the objects B(2(—,d), D,¥F) € € in the special
case where 4l is a representable functor. This depends functorially on d € 9, so we
may define a functor

B(9,9,5): 9 —> @, d— B(2(—,d),9,%)
In particular, by allowing § to vary we obtain a functor B(2,9, —): €2 — €.
Lemma 5.111. We have natural isomorphisms
Bo(D(—,d), D, *) =~ N(D/d), Bo(*,2,2(d,—)) =~ N(d/D)

and hence, in particular, there are natural isomorphisms Be(2,9D,%): WD/-): D —
sSet and Be(*, D, D) =~ N(—/D): D°P — sSet.

lle

Proof. We have to establish a natural bijection
W(D/d)n = Fun([n], 2/d) — Bu(2(=,d),2,%) = [ [ D(sn.d)
sezlnl
A functor f: [n] — D/d is nothing more than the information of a commutative

diagram
f1 f2 fn

5()._‘. Sl-. 82_ Sn
f
Ty d
But this is completely determined by only the information of the n-tuple of arrows

S0 iy I sy, along with the map s, ENY) Thus, by forgetting the dotted arrows

above, we obtain a natural bijection
N(D/d)n — Bp(D(—,d), D, *)

The other isomorphism is constructed analogously. ]

We shall dualize the bar construction to arrive at the cobar construction. Be-
fore doing that, let us introduce some new notions. In the presence of a cotensor
{—,—}: sSet® x € — €, the functor cotensor product or sometimes functor hom
of U: D — sSet and §: D — € is the end

(U, 517 = J {Ud, Fd}
deD

Then if € is cotensored over sSet, by means of {—, —}, then the totalization of a
cosimplicial object X*: A — € is defined by

TotX*® = { XA, X*}2 = J{A",X”}
A

The cosimplicial cobar construction is then a fattened up version of the functor
cotensor product.
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Definition 5.112. Let € be complete and cotensored over sSet and let §: 9 — €
and U: D — sSet be small diagram functors.

e The cosimplicial cobar construction C* (U, D,F) is a cosimplicial object in
% which has n-simplices

CM(,2,5) =[] {ts0,Fsn}

sezpln]

e The cobar construction C(i, D,F) is the totalization of the cosimplicial
cobar construction, i.e.,

CWLD.5) = (¥4, C*(1,9,3)}> = j{A",C"w,@,s)}
A

Theorem 5.113. Let € be a simplicially enriched model category with cofibrant
replacement functor L and fibrant replacement functor R.

e The functor
B(2,2,L-): €7 - €7
gives rise to a left deformation for cogljzirn: €7 - 6.
e The functor
B(2,2,R-): €7 — €7

gies rise to a right deformation for liggl: €7 - G.

Proof. See Theorem 5.1.1. in [34]. O

Corollary 5.114. If € is a simplicial model category and D is any small category,
then the functors cogzim7 liggn: €2 — € admit left and right derived functors, denoted

hocglim and hoéim, which are given by
hocolim := L colim ~ B(x, 2, L—), holim := Rlim ~ C(x,9, R—)

2 2 [2/ 2

Proof. By Theorem 5.113 and Theorem 5.66 we have
]Lcoglzim ~ coglgmB(@,@,Lf) ~xQOg B(9,9,L-)
But then
*®9 B(@7@7L7) = B(*QQ 97@7[/7) = B(*agaLf)

(for details see [34] Corollary 5.1.3.). Analogously,

Rlim = 1im C(2, 2, R-) = {+,C(2, D,R-)}? ~ C(x,P,R—)

O

Example 5.115. The homotopy colimit of the terminal functor x: 9 — € is
B(*,9, %), which is isomorphic to the geometric realization of the nerve of @. In
the case where 9 is a 1-object groupoid, that is, a group G, this space

BG = B(*,G,*) = B(x O¢ G,G,*) =~ *O¢ B(G,G,*) =: congG

is called the classifying space of G. More generally, B(*, D, *) is referred to as the
classifying space of the category 9.
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Theorem 5.116 ([34] Theorem 6.6.1). Let §: & — € be any diagram in a complete
and cocomplete, tensored, cotensored and simplicially enriched category €. Then
there are natural isomorphisms

B(*»2,3) =N(-/2)02F,  C(x2,3) = {N2/-).3}”
In particular, the homotopy colimit of a pointwise cofibrant diagram § can be com-

puted by the functor tensor product with N(—/D). Dually the homotopy limit of
a pointwise fibrant diagram can be computed by the functor cotensor product with

ND/-).

Proof. We will prove the result by means of some coend calculus. By Fubini’s
Theorem for coends and cocontinuity of simplicial tensors we get:

m(_/@) @9%; B(*,@,@) @9%’

de

> [ 182,90 )05
deo [nlea

~ f f A" x By (%, D, D(d, )))@sd
de [n]eA

;f J A" @ (By (%, 9, (d, —)) © §d)
deD

12

| amof f (4,2, 9(d, ) ©5d)

Moreover,
[nleA

B(x,2,3) = J A" © Ba(%2,3)

Taro(urm

569["]

12

Hence we simply have to prove that we have an isomorphism
deD
f Bu(»2,9(d,-)0Fd= ] s
se(n]
By Lemma 5.111 we have B, (x,2,9(d,—)) = MN(d/D)n, so the LHS of may be

rewritten as
deD

1o
N(d/D)n

But elements in 91(d/D),, are strings s: [n] — P of n composable morphisms in &
together with an arrow d — sg in &. Thus, we obtain

deD deD

J [] 2@s)osd= ]] f D(d,s0) ©Fd= [] Fso

sezpln] dez™] sezpln]

as wanted. O

For more details on homotopy (co)limits and categorical homotopy theory, see
[34].
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6. SHEAF THEORY AND LOCALIZATIONS

I have no use for adventures. Nasty
disturbing uncomfortable things!
Make you late for dinner!

Tolkien, J.R.R. The Hobbit (Bilbo
Baggins)

This section is based on [9] and the corresponding Nlab article on Sheaves.

The study of sheaves is, at its core, the study of locality, which captures the idea
that the properties of an object can be understood by examining it locally. Sheaves
provide a powerful framework for encoding this local information and gluing it
together to obtain a global understanding. However, in certain situations, the con-
ventional framework of sheaves falls short, and a more flexible and sophisticated
notion is required to capture the intricate nature of the data under consideration.
This is where the notion of co-sheaves comes into play. An ordinary sheaf is a
mathematical construct that assigns local data to each open subset of a topological
space. The concept of locality is encoded through the sheaf condition, which states
that the local data on overlapping open subsets should be compatible. However, in
modern mathematics, there is a growing need to handle more complex and nuanced
data that goes beyond what can be captured by ordinary sheaves. To address this
limitation, the theory of co-sheaves was developed. The key idea behind oo-sheaves
is to generalize the notion of locality to account for higher-dimensional informa-
tion. Instead of assigning ordinary sets or groups to open subsets, co-sheaves assign
higher categorical structures, such as co-groupoids or co-categories. These higher
structures allow for a more refined encoding of local data, capturing not only the
objects themselves but also the rich network of relationships and interactions be-
tween them. In this chapter we will first discuss the notion of ordinary sheaves
on a site and we will investigate how any such category of sheaves is really just a
reflective subcategory embedding. This in turn will motivate the notion of co-sheaf,
as this will be a homotopical version of a reflective subcategory embedding.

6.1. (Pre)Sheaves. Let us start off this chapter by reminding the reader of the
classical definition of a presheaf on a topological space. Fix a topological space
X. Then X induces a poset category of open subsets ®X which has as its objects
the open subsets of X and morphisms are inclusions. A presheaf & on 0X (or
put differently a functor &: OX°P — Set) then boils down to providing a family
of sections (6U)yeox and restriction maps |y: GU — SV for every inclusion
V < U in 6X. The canonical example of such a presheaf is the hom-functor
F1opX = Top(—, X) which takes an open subset U < X to the set of continuous
functions Top(U, X) and an inclusion V' < U is taken to the genuine restriction map
|y : Top(U, X) — Top(V, X). We then also readily notice that Top(—, X) yields a
sheaf, that is, it satisfies Serre’s condition: Given any U € OX and any open cover
(U;)ier of U such that whenever there are maps f; € Top(U;, X) subject to the
condition

fi
for all 4,5 € I, then there exists exactly one element f € Top(U,X) such that

flu, = f for all i € I. In other words, continuity is, unsurprisingly, really a purely
local property. Generalizing the notion of presheaf is quite straightforward then.

v.nu; = filuinu;

Definition 6.1. A presheaf on a category € is a functor G: €°P — Set.
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However, generalizing the notion of a sheaf to something more general than the
category OX takes a little more work:

Definition 6.2. Let € be a category.
e A Grothendieck topology on € is a set £ of families of morphisms {p;: U; —
U} with common codomains (known as coverings) such that
— for any isomorphism ¢ in € we have {p} € £.
— if {U; - U} € ¢ and {V;; — U;} € £ for each i, then the family of
respective compositions {V;; — U} is in 7.
—if {U; B U} e # and f: V — U is any morphism, then the pullback

exists and {U; xy V —> V} e 7.
e A Grothendieck site or just site (€, f) is a small category € endowed
with a Grothendieck topology 7.

The notion of a Grothendieck topology generalizes the notion of open covers of
topological spaces. The respective axioms for the set _# in the above definition are
also quite natural: The only isomorphism in 60X is the identity on X itself (where
X is assumed to be a topological space). Certainly, {X — X} itself yields an open
cover for X. Thus, for any general isomorphism ¢: domy — code, it is natural to
assume that {p} constitutes a cover for codp. Moreover, the second axiom in the
definition of a Grothendieck topology 7 is certainly also something which holds
for open covers of topological spaces and therefore it is natural to also assume
this condition to hold true for a general cover. Lastly, if we consider the pullback
diagram in the above definition with respect to an open cover for a topological
space X, then U; xx V in OX is nothing else than U; n'V and U; n' V — U, is
simply an inclusion, that is, an element of the open cover.

Definition 6.3. Let (€,.7) be a (small) site. A presheaf & € Psh(%) is called a
sheaf (or F-sheaf) if

e for every covering family {U; & U}ier in .,
e and for every compatible family of elements given by a collection

(si € BUj)ier

such that for all j, k € I and all morphisms U; L I Uy in € so that
c
N
Uj Uk
U
commutes, we have

G(f)(sj) = 6(f/)(8k) e G¢

Remark 6.4. The category OX is certainly a site, where the corresponding Grothendieck
topology is given by the collections of open covers of objects in ©X. In other words,
a covering family {U; — U} in 0X is simply a family of open subsets of U such
that UU; = U. A presheaf &: OX°P — Set is then a sheaf precisely if for every
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covering family {U; — U},c; and any compatible family of elements (s; € GU;)jer
such that for all j,k € I and all U; <= V — U, in OX so that

N
NS

commutes (which boils down to V < U; < U and V < Uy < U respectively), we
have

silv = sjlv
which precisely agrees with the usual definition of sheaf on 6.X.

We shall next give an equivalent definition of what a sheaf is in more general
abstract terms:

Definition 6.5. Let (€, .7) be a site.

e Given a covering {U; 5 U}ic; in 7, its corresponding Cech sieve is the
presheaf S({U; & U}) defined as the coequalizer of the diagram
_
]_[ J:Uixg:U J:Uj HJ:Uz

%
i,5€1 iel

where & : € — Psh(®) is the Yoneda embedding. Here the coproduct on
the left of the above diagram is defined via the pullbacks

J:UZ Xy JiUJ **Izifﬁ J:Ul

Pj | l:k@i
v

KU ——— XU
£p;j

while the two parallel arrows are those induced componentwise by the two
projections p; and p; in the pullback diagram.

Loy S({U; % U;}) — XU the canonical morphism that is
induced by the universal property of the coequalizer from the morphisms
Ko XUy — KU and KU; x .y KU; — KU:

]_[ J:UiXJ:U J:Uj HC]:UZ

i,5€l el

e Denote by i{U

S({U; B U})
i{Ui,:ﬁU}

v

XU
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Remark 6.6. Since (co)limits are calculated componentwise in a category of presheaves,
we may calculate the sieve S({U; & U}) very explicitly. Indeed, recall that the col-
imit of a diagram D: @ — Set may be computed as

colim Dd =~ M
deo ~

where ~ is an equivalence relation on the set [[ Dd defined by
de2

(d,teDd) ~ (d,t € Dd) <L 3f:d—d': D(f)(t) =t
Thus, if ¢ € € is a fixed object then we may consider the diagram S({U; & U})(c)
given by the coequalizer of

_

I €. Ui) xger)€c,U;) T [1€(c,U)

i,7€l el
Using the above formula for general colimits of set-valued diagrams we deduce that
S({U; £ U})(c) corresponds to those morphisms f € €(c,U) that factor through
some @y, for some k € I:

Definition 6.7. A sheaf on a site (€, #) or a #-sheaf is a presheaf & € Psh(®)

that is a local object with respect to all i{U»ﬁU}: an object such that for all cov-
Pi )

ering families {U; = U} in # we have that the hom-functor sends the canonical

morphisms 4 S({U; B U}) — &U to isomorphisms:

oy
i:UiﬁU} [%F}
Pshg(&U,6) ————————— Pshe(S{U; B3 U}),6)
The category of 7 -sheaves Shy(€) or Sh(g, ) is the full subcategory of presheaves
which has only #-sheaves as its objects.

Remark 6.8. The above can be reformulated by means of the Yoneda Lemma and
the fact that the contravariant functor Pshe(—, &) sends colimits to limits: A
presheaf & is then a sheaf if and only if the induced diagram

G6U ---------- »> [[Pshg(XU;, & Pshe (& U; x £U;, &

LI P (30, 8) 7 11 Psb( s % 505, ©)
is an equalizer diagram for each covering family {U; — X} € Z". Thus, since the
pullbacks of presheaves &U; x .y &U; are themselves representable by definition
of a site, we know that the pullback U; xyy U; exists in € even before passing to the
Yoneda embedding. Hence applying the Yoneda Lemma the sheaf condition boils
down to

_
66U ---------- > H6<Ui) ]_[ S((U; xu Uj)
el 1,5l
being an equalizer diagram. This is referred to as the descent condition along the
covering family.

Proposition 6.9. The condition that the induced morphism

it
{v:5v}
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is an isomorphism for a cover {U; 5 U} is equivalent to the condition that the
set GU is isomorphic (in bijective correspondence) to the set of compatible families
(s; € ®U;) as given in Definition 0.5.

Proof. See the Nlab Sheaf Proposition 2.8. (]

6.2. Reflective Localization. Recall the notions of category with weak equiva-
lences and localization of a category as defined in chapter 5.2. We have explicitly
constructed the localization at a class of weak equivalences #° < €. However, one
may also go about the definition in a more abstract manner:

Definition 6.10. Let € be a category with weak equivalences %#'. Then the
localization of € at ' is, if it exists,

e a category G[% ],

e a functor v: € — G[W '] = G~
such that

e 7 sends all morphisms in 7" to isomorphisms in €. .

e ~ is universal with this property: If §: € — 9 is any functor which sends
morphisms in 7 to isomorphisms, then § factors through + up to natural
isomorphism:

%—>9

\« ﬂ 7 106(3)

and any two such factorizations loc(§) and 1823(3) are related by a unique
natural isomorphism ¢: loc(F) — loc(§) compatible with &: § = loc(F)y
and £: § S loc(§)y:

o 5 - g ¥ - D
S :
€l 1oc(®) > loc(3) = ¢ loc(3)
/ |
@ z. G-~

In other words, we have a commutative diagram

§ — loc(3)y

N
loc(F)y

Remark 6.11. The previous definition certainly extends the notion of localization
of a category € at a class of weak equivalences 7. Our original definition of course
satisfies all the respective properties (the involved natural isomorphisms are just
identities).

Definition 6.12. Let & be a category with weak equivalences %#'. Then the
localization of € at #  is called a reflective localization, if the localization functor
has a fully faithful right adjoint, exhibiting it as the reflection functor of a reflective
subcategory-inclusion:

@ I AV
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Definition 6.13. Let € be a category and let S € Mor% be a set of morphisms
in 6.
e An object ¢ € € is called S-local if for all s € S the hom-functor induces
a bijection

€ (s,c)

€ (cod(s),c) € (dom(s), c)

In other words, any morphism f: dom(s) — ¢ extends uniquely along s to
cod(s):
dom(s) AN

‘{ 3|
cod(s)

e A morphism f in € is an S-local morphism if for every S-local object
c € € the induced hom-functor

% (codf,c) ka2 € (domf, c)

is a bijection.

e Denote by v: €g — € the inclusion of the full subcategory of S-local
objects.

e The reflection onto S-local objects is, if it exists, a left adjoint L to the
full subcategory inclusion ¢: €g — €:

€ Es

Lemma 6.14. Let us consider adjoint functors

5
14 1 D
s(
Then § is fully faithful if and only if the adjunction unit n: lg — UF is a natural
isomorphism. Moreover, if § is fully faithful, then e is a natural isomorphism.

Proof. Let us denote by ¢ the adjunction isomorphism

>~

25, -) = (. 4)

Then we have n = ¢(15). We shall then verify that the dashed arrow is equal to
the composition of the other two arrows in the diagram

€lc,d) —— D(Fe, §¢)
% A
T4
€ (c, UFc)

If we manage to show this, then the first of the above claims obviously holds. By
naturality of ¢ we have a commutative diagram

D(§c,Fc') ———— G(c, UF')
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Evaluating the above square at the morphism 1lgz. yields the first claim. On the
other hand, if § is fully faithful then we have shown that 7: 1l¢ — UF is a natural
isomorphism. By the triangle identities we have a commutative diagram

[ ey 11
\ J{ue
1l

and hence e is a left inverse for the natural isomorphism nil, which in turn yields
that {le must be a natural isomorphism. O

Remark 6.15. Certainly enough the above Lemma has its dual counterpart.

Proposition 6.16. FEvery refiective subcategory inclusion

L
%L 1 €

L

is the reflective localization at the class W := L~'(Isos) of morphisms that are sent
to isomorphisms by the reflector L.

Proof. We just have to verify the universal property as given in Definition 6.10.
So, let §: € — P be a functor that maps morphisms in %" to isomorphisms in
2. We shall first show that § factors through L up to natural isomorphism. Let
n: lg, — 1L and €: Lt — lg be the corresponding adjunction unit and counit, and
consider the whiskering £ := §n along with loc(F) = §u:

¢c—3 9 2,9

/“ \

But §7: § — F¢L is a natural isomorphism (by the dual counterpart of Lemma
6.14), so the factorization follows. For uniqueness up to isomorphism of this fac-
torization see the Nlab page reflective localization Proposition 3.1. O

Proposition 6.17. Let € be a category with weak equivalences # . If the localiza-
tion of € at W is reflective
L
€ L Elw 1]

L

(where we use the letter L instead of v to denote the localization functor) then
GW '] <5 G is equivalently the inclusion of the full subcategory of W -local objects
and hence L is equivalently the reflection onto W -local objects.
Proof. We shall prove that

e every object tc € € for c € €[# '] is an S-local object.

e c€ @ is W-local if and only if it is in the essential image of €[W '] < &.
The first claim is immediate from the natural isomorphism of functors

%(_a LC) = Cg[Wil](Lv C)

Regarding the second claim: Assume first that ¢ € € is # -local. Our first ob-
servation is then that ¢ must also be local with respect to the saturated class of
morphisms

/A Lil(Isos)
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that are inverted by L. Indeed, the hom-functor
4 #(5e) SetP

takes morphisms in %" to isomorphisms (by assumption). Hence by the univer-
sal property of the localization functor L it must factor through L up to natural
isomorphism:

%(_76)

€ Set°P

€[7 ]

But this implies that any morphism that is inverted by L must also be inverted by
€(—,c), as claimed. We then know that the component 7. at ¢ of the adjunction
unit : lg — L must be in @,y (L7 is a natural isomorphism by Lemma 6.14).
However, 7. € W5, ensures that we have a bijection

€(ne,
€ (.Le, ) % €(c,c)

Denote by 1,1 the preimage of the identity morphism 1. under the above bijection.

By construction 7! is a left inverse for 7, and by the 2-out-of 3 property 1, ! € Was.

Moreover, the above also showed that ¢Lc is in Z5a4, S0 we may play the same game

with 1. 1: We consider the bijection

€ (c,tLc) % €(tLe,LLe)

to obtain a left inverse (n,!)~! for 5. But this implies that 7.: ¢ — (Lc is an
isomorphism, which proves that c is in the essential image of ¢. Conversely, if c € €
is in the essential image of ¢, then it is immediate that c is # -local. O

Proposition 6.18. Let € be a category and let S < Mor® be a class of morphisms
in €. Then the reflection onto S-local objects (Definition 6.153) satisfies, if it exists,
the universal property of a localization of categories with respect to left adjoint
functors inverting morphisms in S.

Proof. We first observe that

S-local morphisms = L~ (Isos)
since we have

E(f,c) =C(f,wc) ~Cs(Lf,c)
for every morphism f in € and every S-local object ce €. If

S S
€ 1 D
I

is a pair of adjoint functors such that the left adjoint § inverts the morphisms of
S. From the isomorphism

D(Fe,d) = €(c, Ud)

it then follows immediately that  takes values in €g. This in turn, however,
implies that § inverts all S-local morphisms, and hence all morphisms that are
inverted by L. Thus the claim follows from Proposition 6.16. O
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So having all that, what is the relation with our notion of #-sheaves for a site
(€, .7)? We may consider the fully faithful inclusion of #-sheaves into presheaves
on €:

Sh(g)]) —tr PShqg

This functor has a left adjoint if and only if the right Kan extension

Shig 7) = Sh.s)
/)r
‘ //’/L::RanLl
Pshg

exists and is preserved by ¢ (this follows from Theorem 3.10). The category Sh(g, 7)
is complete however, since limits commute with limits (the defining condition of a
sheaf involves an equalizer diagram) and we may compute limits of sheaves in the
category of presheaves. Therefore, L = Ran,1 exists and, moreover, it is preserved
by ¢ (¢ leaves the Kan extension untouched). This implies, along with Proposition
6.16, the following result:

Theorem 6.19. FEvery category of sheaves is a reflective subcategory

L
Sh(g7j) L Pshe

In particular, the category of sheaves is equivalent to the localization Psheg[# 1]
with W = L~ (Isos).

Remark 6.20. In fact, even more than the previous Theorem holds true: First of
all one may prove that the reflector L: Pshg — Sh(g, ¢ (also called sheafification)
is left exact (preserves finite limits). Moreover, every Grothendieck topos arises in
this way: Given a small category € there is a bijection between

e the equivalence classes of left exact reflective subcategories & < Pshg of

the category of presheaves

e Grothendieck topologies £ on €,
which are such that & ~ Sh(g 7). See the Nlab link sheaf toposes are equivalently
the left exact reflective subcategories of presheaf toposes.

6.3. (Left) Bousfield Localization. This chapter is based on the Nlab article
Bousfield localization of model categories.

Bousfield Localization is, very roughly speaking, a procedure that takes a model
category as input and spits out a new model category with more weak equivalences.

left Bousfield localization
'3 %loc

Bousfield localization will be a most crucial tool in the later chapters on co-categories.
The main idea will be to take a certain model category of simplicial presheaves -
e.g. PshA(AXd)inj - on which we will perform a left Bousfield localization so as
to single out oco-categories as fibrant objects in the new model category structure.
Therefore, it is helpful to think of Bousfield localization as the procedure which
singles out certain kinds of objects (the fibrant objects in the new model structure)
and provides these with a new ambient homotopy theory of sorts.

Definition 6.21. A left Bousfield localization €. of a model category € is another
model category structure on the underlying category € with the same cofibrations

CqugloC = Cofg


https://ncatlab.org/nlab/show/sheaf+toposes+are+equivalently+the+left+exact+reflective+subcategories+of+presheaf+toposes
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but with more weak equivalences
ngloc D qu

Remark 6.22. It follows directly from the definition of a left Bousfield localization
that

%} |
o Fibqgloc = (Cofgluc M ngoc> c <COfgloc M Wg) = Flb(g
Fibg, . N Wg,. = Cotg = CofZ = Fibg n Wi
The identity functor € — ®)oc preserves cofibrations and weak equiva-
lences.

The identity functor G, — € preserves fibrations and trivial fibrations.
Consequently, the pair of identity functors constitutes a Quillen adjunction

€ L Gloc
Definition 6.23. Let € and 2 be model categories, and let
5
€ 1 D
I

be a Quillen adjunction. Then this adjunction is called a Quillen reflection if the
induced derived adjunction (see Theorem 5.70)
L3§

Ho® 1 Ho9
Ry

is a reflective subcategory-inclusion.

Proposition 6.24. Let € be a model category. Then any left Bousfield localiza-
tion Bloc of € constitutes a Quillen reflection. More precisely, a left Bousfield
localization constitutes a Quillen adjunction between identity functors
id
%loc L ‘4
id

which is a Quillen reflection. In particular, the induced derived adjunction

Lid
Ho%oc 1 Ho®
Rid
is a reflective subcategory-inclusion.
Proof. See Example 2.2 on the Nlab Quillen reflection. O

Remark 6.25. The idea of a Quillen reflection is that of a homotopical reflective
subcategory-inclusion. Proposition 6.24 tells us that left Bousfield localization is a
particularly nice such homotopical reflective subcategory inclusion.

Throughout, we shall assume that € is a simplicial model category. Let S <
Mor® be a subclass of morphisms. Recall that in an ordinary category €, a mor-
phism f in € is an isomorphism if and only if for all objects x € € the morphism

E(f,z): G(codf,z) > €(domf, x)

is an isomorphism. Guided by this fact we have the following definition (very much
reminiscient of we did in the previous chapter):

Definition 6.26. Let € and S be as described above.
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e An object X € @ is called S-local object if for all s in S the induced
morphism on derived hom-spaces

RHom(s,X)

RHom(cod(s), X) RHom(dom(s), X)

is a weak equivalence of simplicial sets.
e A morphism f in € is called an S-local weak equivalence or S-equivalence
if for all S-local objects X € € the morphism

RHom(cod f, X) Etlom(£,)

RHom(domf, X)

is a weak equivalence of simplicial sets.
e We write %5 for the collection of all S-local weak equivalences.

Remark 6.27. The above definitions may be rephrased by using
RHom(X,Y) ~ €(LX, RY)
for L, R: € — € cofibrant and fibrant replacement functors and all X,Y € &.

Proposition 6.28. Let € be a 'nice enough’ simplicial model category.
o A fibrant object X is an S-local object if and only if for all s € S the
morphism

€(s,X)

% (cod(s), X) % (dom(s), X)

s a trivial Kan fibration.
o A cofibration f in € is an S-local weak equivalence if for all S-local fibrant
objects X the morphism

& (f,X)

€ (codf, X) € (domf, X)

18 a trivial Kan fibration.

Remark 6.29. For what we mean by ’nice enough’ we refer the reader to the cor-
responding nlab article Bousfield localization of model categories as well as the
corresponding section on Bousfield localization in [16].

If & is a simplicial model category and f is a weak equivalence between cofibrant
objects in €, then it follows from the axioms that

€ (f,X)

€ (codf, X) € (domf, X)

is a weak equivalence of simplicial sets for all fibrant objects X. In particular,
since the cofibrant replacement functor L: € — € is homotopical by the 2-out-of-3
axiom we get:

Lemma 6.30. Every ordinary weak equivalence in € is also an S-local weak equiv-
alence:

WCWS

Definition 6.31. The left Bousfield localization Ls® of a given model category €
at a class of morphisms S is, if it exists, the new model category structure on €
with

o COfLS% = COf{g

o COfLSg M WLS% = Cofg M WS

Proposition 6.32. Assuming the left Bousfield localization exists as above, fibrant
objects in Lg€ are precisely the fibrant objects in € that are S-local objects.
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One now wonders if any left Bousfield localization is induced by a family of
morphisms S in €:

Proposition 6.33. In the context of left proper, cofibrantly generated simplicial
model categories (see the Nlab), for Gloc a left Bousfield localization of € as defined
in Definition 6.21, there is a set S < Mor€ such that

<—gloc = LS(g

Theorem 6.34. If € is a nice enough simplicial model category and S < Mor®
is a small set of morphisms, then the left Bousfield localization Lg% does exist.
Moreover, it satisfies the following conditions:

o The fibrant objects of Lg€ are precisely the S-local objects of € that are
fibrant in €.

o Lg% is itself a left proper model category.

o L% is itself a simplicial model category.

Remark 6.35. See Bousfield localization of model categories and the correspond-
ing section in [16] for more details on the technicalities. For our purposes all left
Bousfield localizations exist, so we really don’t need to indulge ourselves into tech-
nicalities.

Example 6.36. The following model categories € are nice enough, so that The-
orem 6.34 is applicable and therefore, for every set S ¢ Mor®, the left Bousfield
localization Lg€ exists:

e The category Top endowed with the standard Quillen model structure on
topological spaces.

e The category sSet endowed with the standard Quillen model structure on
simplicial sets.

e The functor model categories %{%j for any simplicially enriched small cat-
egory 2 and € a nice enough category, e.g., € = sSet.

In the upcoming sections, whenever we mention Bousfield localization, we shall
refer to [16] for a pointer to existence results.

Remark 6.37. Bousfield localization may actually be defined via a universal prop-
erty: Suppose % is a model category and S is a set of morphisms in €. The
left Bousfield localization of € at S is a model category Lg@® together with a left
Quillen functor §: € — Lg% that satisfies the following universal property: com-
posing with § maps left Quillen functors Lg% — <2 bijectively to left Quillen
functors U: € — D such that the left derived functor of i sends elements of S to
weak equivalences in &. In other words, the map

1Q(Ls%,9) ———— 1Q(%,2).
is a bijection, where the LHS denotes left Quillen functors Lg% — 2, while the RHS
denotes left Quillen functors whose left derived functors send S to weak equivalences
in 9.

6.4. co-Sheaves. We shall now generalize the notions of presheaves and sheaves to
simplicial presheaves and simplicial sheaves. The main difference is that a simplicial
presheaf on a site (€, #) will take values in spaces, or more precisely, in simplicial
sets.

Definition 6.38. A simplicial presheaf on a site (€, #) is a functor &: €°P — sSet.
The category of simplicial presheaves will be denoted by

Psha (%) := Pshaxg = Set®”"xA™
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We may also define a generalized version of Cech sieves, which are now referred
to as Cech nerves:

Definition 6.39. Let (%, .#) be a site and fix a covering % = {U; Rt Ulicr.
e The Cech nerve C% of the covering % is the simplicial presheaf given by
[kleA

CU = J Ao T W)

D0 ye-es in€l

where U, ..i,) = Ui, Xu ... Xy U, is the iterated pullback and &: € —

Set®”” is the Yoneda embedding. In more detail, C% is the simplicial
presheaf which has as its n-simplices

C%, = ]_[ FUig, ... in)
10 yeeeyin €l

The simplicial structure maps di and s, are given by projecting out or
doubling the k-th factor, respectively:

31dy,
L1 J:U(io,...,in) -Ie 11 J:U(io,...,in)

’io,...,in,EI ig,...,in_lef

J [

*Ugp, iy —— &U,

(10,‘..,i;€,...,i'n)

ls
1 J:U(io,“.,in,) -2y [ J:U(io,...,in)

10y esin €1 10,0 sin+1€1

J [

FUp,..iry —— FUgq,..

R .,
st reeesin,)

e There is a canonical map

Cu *U

induced by the universal property

With these notions in hand we may now define the concept of an co-sheaf:

Definition 6.40. Let (€, ) be a site and consider the category of simplicial
presheaves Psha (%)inj endowed with the injective model structure. An co-sheaf is
a simplicial presheaf G € Psha (%) which is
e afibrant object with respect to the injective model structure on Psha (€ )inj,
e local with respect to the canonical morphisms C% — XU for every cov-
ering % in £, that is, all induced morphisms

RMap( kU, 6) RMap(C%, 6)

are weak equivalences of simplicial sets.
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Theorem 6.41. There exists a model category structure PSha(€)¢ee,, called the
Cech model structure, giwen by performing left Bousfield localization on Psha (€ )inj
at the canonical morphisms CU — X U. Fibrant objects in this model category are
precisely co-sheaves.

Proposition 6.42. Let X € Psha(®)inj, or X € Psha(€)ioc for some left Bousfield
localization of the injective model structure on simplicial presheaves, then X may
be written as the homotopy limit (with respect to the associated model structure)

X =~ hocolim([n] — constX,,)
Proof. Follows along the same lines as the proof of Corollary 5.105. O

We recall that any presheaf may be written as a colimit over representables by
Corollary 3.9. In particular, any object in Psha (€)inj or in Psha (%)ioc for any left
Bousfield localization, is cofibrant. Hence:

Corollary 6.43. Any object X € Psha(€)ioc for any left Bousfield localization of
Psha (€ )inj may be written as a homotopy colimit over representables:

X ~ hocolim X (¢, [n])
Proof. Using Ken Brown’s Lemma 5.17 we have
X = colim & (¢, [n]) ~ colimL( & (¢, [n])) ~ hocolim & (¢, [n])

where L is some cofibrant replacement functor. O
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7. ©0-CATEGORIES

Bilbo: "Good morning!" said
Bilbo, and he meant it. The sun
was shining, and the grass was very
green. But Gandalf looked at him
from under long bushy eyebrows
that stuck out further than the
brim of his shady hat.

Gandalf: "What do you mean?" he
said. "Do you wish me a good
morning, or mean that it is a good
morning whether I want it or not;
or that you feel good this morning;
or that it is a morning to be good
on?"

JR.R. Tolkien, The Hobbit
For the following chapters we will mostly follow [26], [24], [6], [31] and [30].

The notion of categories is a fundamental concept in mathematics that has found
applications in many areas, including topology, algebraic geometry, and homotopy
theory. However, in some cases, a single category is not enough to capture all the
relevant information of a mathematical structure. This has led to the development
of higher category theory and, more recently, co-category theory. For us it will be
crucial to encode everything in terms of co-categories, as this will allow us to talk
about fully extended functorial field theories.

7.1. A Simplicial Perspective on Category Theory. There are several ap-
proaches to define what it means to be an co-category. The idea is to generalize
the standard notion of a category, which has objects and morphisms between those
objects, to something which does not only have objects and morphisms, but also
morphisms between morphisms, and then morphisms between morphisms of mor-
phisms and so on. For example, the following picture visualizes two objects with
two morphisms between these, and then an associated pair of 2-morphisms, along
with a 3-morphism between the 2-morphisms:

More generally, the following picture shows a multiple 4-category which has objects
(those being the white dots), morphisms between the objects (the pink arrows), and
2-morphisms between 1-morphisms (the purple arrows), 3-morphisms between 2-
morphisms given by the orange arrows and 4-morphisms between the 3-morphisms
(the green arrows). The word multiple highlights that higher morphisms, say a
2-morphism, doesn’t have to have as domain and codomain 1-morphisms which
both share the same domain and codomain themselves. A better name for this
sort of category would probably be quadruple category (if one thinks of double
categories). A 4-category which satisfies that its higher morphisms have as its
source and target only morphisms which have the same domain and codomain will
be called globular 4-category and the mentioned condition is usually referred to as
globularity. Replacing 4 by an arbitrary d, we get a general sketch of definition for
these things.
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We mention that composition of (higher) morphisms should not be assumed to be
unique in general, i.e., composition of morphisms should only be demanded up to
homotopy (this will be discussed in the chapter on co-groupoids). Encoding both
this property of higher morphisms and this notion of homotopy in the mentioned
context leads quite naturally to a unison of the theory of simplicial sets (or more
generally simplicial presheaves) and the theory of model categories, which in the
end will result in a precise definition of (oo, d)-categories.

Before getting to all that it is important to realize that any definition of co-
category should also include ordinary categories, i.e., any category should be an
oo-category where the higher morphisms are all simply identities. Therefore, in this
chapter we will focus our resources towards showing that ordinary category theory
may be encoded by means of simplicial sets, and simplicial sets in turn are encoded
by co-categories (actually oo-groupoids):

Cat. Theory —— Simpl. Homotopy Theory «—— oo-Cat. Theory
In order to get a feel for this, recall that for a category € we defined its nerve M€

to be the simplicial set with n-simplices €™, where [n] = {0 - 1 — ... — n} is
viewed as a category. This boils down to the following:
NGy = Ob¥

NG, = Y xgpo ... X M

where we recall that €9 corresponds to the set of objects of the category € and
%] corresponds to the set of arrows of €. For example, if n = 2, consider the
commutative diagram

[2] =2

Po—1 Po
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where the maps

(5) Pig—s..cmsips : [m] = [1]

for 0 <ip < i1 < ... < iy < 1 are given by [m] 3 j — i; € [n]. Embedding this
commutative diagram by means of the Yoneda Embedding yields a commutative
square

A2 Al

A e AD
Since sSet is cocomplete the corresponding pushout A [ [ o A! exists and therefore,
by the universal property, there exists a unique map

Al ]_[AO Al AQ
The hom-functor sSet(—, M%&) takes this map to an isomorphism:
sSet(A2NE) =2 Gl — = @l x 0 G = sSet(A [0 AL, NE)

Indeed, the diagram
gl2l P o]

pﬁﬁl PB
gl — gl
Py
is a pullback square since €[ exactly agrees with
El x g €1 = {(f,9) € €11 x &1 | pif = pig}
= {(f, g) e M x @l | codf = domg}
More generally, the commutative diagram

[a+ b] Lommmett (p)

Po—...—a Po
la] «————[0]

induces an isomorphism
glatd] = = ¢ld X g[0] bl

The property that 91¢ induces the above isomorphisms may be phrased by saying
that M is (strictly) local with respect to the family of maps A**? — AT, , AP,
In particular, a functor §: € — 9 is completely encoded by MF: NE — ND in
terms of the following data:

NFo = Szl
NF,, = Fg Xgol - .. Xglo] Sgl)

where Fgror: €L — DI and Fepy: €M — DU are the assignments induced by
how the functor acts on objects and morphisms of €. In this manner, we have
seen that every category gives rise to a simplicial set and that the corresponding
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simplicial set is already fully determined if one knows about €% and &!. Is the
converse true?

Definition 7.1. A simplicial set X satisfies the strict Segal condition if the map
Xn—>X1 XXg oo XXgXl

induced by the universal property of the pullback

Xa X X, Xb » Xb
Xpo
Xo ———— Xo

Pa

is a bijection for all n > 2.

Remark 7.2. Note that for a category € the assignment of domains and codomains
of morphisms may be equivalently described in terms of the simplicial set NE.
Indeed, domg = p§ and codg = p}. Moreover, the codegeneracy map s°: [1] — [0]
and the degeneracy map d': [1] — [2] are equal to po_o and po_.2, respectively.
Applying the simplicial set NE to s® and d' above yields the respective identity as
well as composition morphisms.

Guided by the previous remark and the strict Segal condition we have the fol-
lowing:

Theorem 7.3. A simplicial set X satisfies the strict Segal condition if and only if
there exists a category € such that NE s naturally isomorphic to X.

Proof. Define the category € as follows: The objects of € are given by the elements
of the set Xy and morphisms between these objects are defined by setting Mor® =
X;,. Then source, target and identity maps are defined as domg = di: X; —
Xp,codg = dy: X1 — Xo,1lg = sg: Xg — X1 and composition is given by dy : Xy =~
X1 X X X1 — Xl. [l

Proposition 7.4. The nerve functor N: Cat — sSet is fully faithful.

Proof. We have to prove that the map
Cat(€,92) — sSet(NE€,ND)

has an inverse. Let (: % — ND be a natural transformation. Define ¢(¢) as the
functor € — 2 which on objects is equal to (; and on morphisms is equal to (3.
Simplicial identities verify that this is indeed a functor. It is then clear that for
any functor §: € — P we have »(NMF) = §, and on the other hand, M (¢) = ¢ as
those maps agree at level 0 and level 1 and that already completely determines the
map. U

The strict Segal conditions, or rather the structure of what it means for a simpli-
cial set to actually be a standard category may also be encoded in terms of (inner)
horn filling conditions. Recall the i-th horn A} from Example 2.9. We may then
also describe what happens to groupoids after having been embedded by the nerve
functor:

Theorem 7.5. Let X € sSet.
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e X is the nerve of a category precisely if all inner horns have unique fillers:
For all 0 < i <n any diagram of the form

A} — X
=

A™
admits a unique lift A™ — X making the diagram commute.

e X is the nerve of a groupoid precisely if all horns have unique fillers: For
all 0 < i < n any diagram of the form

A} — X
|

[

ATL
admits a unique lift A™ — X making the diagram commute.

Let us make sense of why this might be true before getting to the actual proof
of the result. Let {Jj};-’;ll be the subset of 2([n])\{[n],{0,...,5,...,n}} whose
elements have cardinality |J;| = n for all ¢ (there are exactly n — 1 such sets). The
horn A} may then be identified with the iterated pushout

AN 1 N ) O [ NS

An. 10T An.JanJ3 AP In—20Tn_1
where A™7 (with J € {J;}}_,) is the corresponding simplicial subset of A™ with
m-simplices

amt ={rean | s(m) < 7}

In particular, note that A™”/ ~ A”~!. With that in mind, let us look at the case
where n = 2. As we saw in Example 2.9, the horn A2 may be depicted by

1
0 2
while A? looks like
1
0 2
and A2 looks like
1
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Since

sSet(Af, X) = sset (A2(01 TT a2, x)
A2:{1}

lle

sSet (A0 X H sSet(AZ112) X))
A1}

{(f,f')ex1 xX1|d1f:d0f’}

any map A? — X corresponds to a pair (f,f’) of 1-simplices of X such that
dof = dyif’ (one should think of composable morphisms). The (unique) lifting
condition corresponding to A%, which is the only inner horn for A%, encapsulates
the notion of X having unique composition in the sense that any two 1-simplices, for
which the source is the target of the other, can be filled to a unique 2-simplex. The
additional face is then thought of as the composite of the original two 1-simplices:

codf

lle

v
ff
The outer horns encode something else entirely, however. The existence and unique-

ness of lifts when ¢ = 0 and 7 = 2 guarantee the existence of unique left and right
inverses to a given l-simplex:

domf > cod f’

codf dom f
=
% o N
dom f - dom f codf Ty dom f

Proof of Theorem 7.5. Let X be a simplicial set such that every inner horn has
a unique filler. We will show that there is a category € and an isomorphism of
simplicial sets X — NE:

e The objects of € are the vertices of X, i.e., Ob% = Xj.

e Given a pair of objects ¢, ¢’ € € the hom-set €(c,c’) is defined as the set
of 1-simplices f € X1 such that d1f = cand dpf = ¢ .

e For each object ¢ € €, we define the identity morphism 1. € €(c, ¢) to be
the 1-simplex so(c).

e For objects ¢,c/,¢” € € and a pair of morphisms f € €(c¢,¢') and [’ €
€(c', ") we may apply the inner horn filling hypothesis to conclude that
there is a unique 2-simplex o € X, satisfying doc = f and dyo = f'. We
may then define the composition f'f € €(c,c”) to be the edge d;o.

We then claim that € is a category. In order to check this we have to verify that
the composition law is unital and associative. For unitality we have to prove:

]-c’f = f = f]-c
In order to see the left identity, we must construct a 2-simplex o € X5 so that
doo = 1+ and dyo = dyo = f. The degenerate 2-simplex s; f has these properties.
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Let us check associativity now: For composable morphisms

afbfcfd

in € we have to verify f”(f'f) = (f"f")f. By repeatedly applying the inner horn
filling property we deduce the following:

e There is a unique 2-simplex o € X5 satisfying dyog = f” and dyog = f'.
e There is a unique 2-simplex o3 € X5 satisfying dyos = f’ and dsos = f.
e There is a unique 2-simplex o9 € X satisfying doos = f”f’ and dyos = f.
e There is a unique 3-simplex n € X3 satisfying don = 0¢,d2n = o2 and
d377 = 03.
The 3-simplex yields a diagram

F"

Setting o = dyn yields a 2-simplex which satisfies dgoy = f”,dyo1 = (f”f’)f and
dyoy = f'f. Hence o1 witnesses the identity f”(f'f) = (f”f’)f. Finally, note that
every n-simplex o: A™ — X determines a functor [n] — €, given on objects by
values of o on the set of vertices Afj and on morphisms by the values of o on the
set of edges AT. This determines a simplicial map X — €, which is bijective
on simplices of dimension < 1. For the remaining claims see [26] Lemma 1.2.3.2,
Proposition 1.2.4.2. and Proposition 1.2.3.1. O

So we have encoded categories and functors in the setting of simplicial sets. What
about natural transformations then? Let €, be categories and view [1] = {0 — 1}
as a category. We then recall that a natural transformation between two functors
€ — D is nothing else than a functor € x [1] — 2. This is easily seen by making
use of the internal hom adjunction

Cat(€ x [1],2) = Cat([1],[%, 2])

and by realizing that functors with domain [1] just pick out an arrow in the tar-
get category. In that spirit we see that natural transformations are equivalently
morphisms NE x Al — ND since, first of all N[1] = Al and therefore

Map(NE,ND); = sSet(N(F x [1]),ND) =~ Cat(¥ x [1],9D)
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Summarizing all this amounts to the following: Category theory can be done just
as well by means of only looking at simplicial sets, categories are encoded by their
nerves, as are the corresponding functors, while natural transformations correspond
to simplicial homotopies between the respective nerves of categories.

7.2. (o0, 0)-Categories aka co-Groupoids. We have seen what really constitutes
a category and how it can be (fully faithfully so) encoded as a simplicial set. We
have also seen that, in this simplicial setting, a groupoid exactly corresponds to a
strict Kan complex, i.e., all fillers are unique. The first notion of an co-category that
we shall define (rigorously) is that of an oo-groupoid. Very roughly speaking, an
oo-groupoid, like any oo-category, has objects and k-morphisms for every natural
number £ > 1. However, an co-groupoid has, by definition, only invertible k-
morphisms for all k. Recall that any topological space X may be viewed as a Kan
complex IT¢o, X := Top(| — |, X) (this is Theorem 2.43) which takes [n] and maps
it to the set of continuous maps |A"| — X.

Example 7.6. Any topological space X gives rise to an oo-groupoid:
e Objects are the points in X.
e l-morphisms are paths from one point to the other.
e 2-morphisms are homotopies between paths.
¢ 3-morphisms are homotopies between homotopies between paths.

e k-morphisms are given by homotopies between homotopies between ...
between paths.

e Composition is given by concatenation of paths, homotopies, etc. We note
that this kind of composition is only unique up to (higher) homotopy.
Identities are the constant paths, homotopies, etc.

=

z. //I/////// ﬁﬂ//////’ b/
9

We note that the above co-groupoid is readily encoded by the Kan complex ¢ X.
In particular, we realize that II<,, X only depends on the homotopy type of X.

With the above example in mind, Grothendieck’s Homotopy Hypothesis argues
that any sensible notion of co-category should imply that the collection of oo-
groupoids is already fully determined by taking homotopy types of topological
spaces. In fact, Grothendieck’s homotopy hypothesis states the following;:

Homotopy Types of Top. Spaces =~ oo-Groupoids

This motivates the following definition:

Definition 7.7. An (o0, 0)-category, or just co-groupoid, is a Kan complex.
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Remark 7.8. The prefix (c0,0) should emphasize that there are infinitely many
layers of higher morphisms, yet all of them are trivial in that they are isomorphisms
(up to homotopy). More generally, an (o0, d)-category will mean an co-category
which allows only the first d-layers of higher morphisms to be non-trivial, while all
higher morphisms, starting with (d + 1)-morphisms, will always be isomorphisms.

Example 7.9. Consider the real numbers R with its group structure induced by
addition. We may view R as a category with a single object, while its set of mor-
phisms is given by the real numbers themselves. Taking the nerve of this category,
and again denoting it by R, results in a Kan complex and hence an co-groupoid.
This construction works for any Lie group.

With this definition one may verify the validity of the homotopy hypothesis,
which is then nothing more than a restatement of Theorem 5.39 by means of Propo-
sition 5.25:

Theorem 7.10 (see [15]). Consider the full subcategories of bifibrant objects Kanquilien “—
sSetQuillen and Spacesquijen > TOPQuinen- Then the adjunction
[—|
KanQuillen LQuillen SpaceSQuillen
T<o

is a Quillen equivalence. In other words, the induced adjunction
L|—|
Ho(Kanquitien) L Ho(Spacesquijien)
RIl.,

is an equivalence of categories.
Remark 7.11. This motivates why we would call a simplicial set a space.

What about co-functors and co-natural transformations between oo-groupoids
(Kan complexes)?

Definition 7.12. Let €, 9 be co-groupoids, i.e., Kan complexes.
e An w-functor € — P is simply a natural transformation of the underlying
Kan complexes.
e An co-natural transformation is a simplicial homotopy between two sim-
plicial maps € — 9, that is, it is a map A x € — D.

We recall that the nerve functor 91: Cat — sSet has a left adjoint bh: sSet — Cat,
which maps a simplicial set to its associated homotopy category.

Remark 7.13 (see also [18]). Any co-functor between oo-groupoids induces a functor
between the respective homotopy categories (by applying §). Let us understand how
an oo-natural transformation h: € x A! — @ induces a natural transformation
between functors on the respective homotopy categories. First of all, the domain
and codomain oo-functors of h are given by

I1e
I

¢1:=h(1xd") Ca:i=h(1xd®)

Next note that any 1-morphism f € €; may be interpreted as a map Al 4 %
(by the Yoneda Lemma). Hence any such f induces a morphism h; given by the
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composition

Alx Al I s g

This in turn results in a square of 1-morphisms in & by considering the four maps:

1xd*

1 0 —— Al 1 fx1 1 h

At x A — AVxAN ——— s EXA —————— D
X

0 1% 1 1 =1 1 h

A x A o Al x Al ———— s gxAl — 2+ P
X

These may be depicted by

haomyi=hs(d' x1)=h(d" x f)

C1(domf) C2(dom f)
Gif=h(1xd")(f) Caf=h(1xd%)(f)
Ci(codf) C2(codf)

heoapi=hys(d®x1)=h(d®x f)

which already looks like the naturality square. What is left to show is that after
passing to homotopy categories the above diagram commutes. We note that, in
order to show this, it suffices to prove that the homotopy category h(A! x Al) is
the category obtained from the diagram

such that the two possible nontrivial compositions agree. This suffices because any
morphism A x A - @ induces a functor on the respective homotopy categories,
which is then nothing else than a commutative square in h2: The objects of h(A® x
A') are the elements

Ag x Ag = {(po. po), (P, p1), (P1. o), (P1.p1)}
where we use the notation of the maps defined in (5). Moreover, we have
Af = {Po—0, P01, P11}, Ay = {Po—0-0,P0—0-1,P0—>1-1, P1>1>1}

The morphisms in h(A! x Al) are given by equivalences classes of elements in
Al x Al. We may depict most of these by

(Po—1,P0—0)

(Po,po) (p1,p0)
\ o™
(Po—0,p0—1) (Po—1,p0—1) (P1—>1,P0—1)
¢
o
(po,p1) (p1,p1)

(Po—1,p151)

where

o1 == (p0—>1—>1,p0—>0—>1)7 02 = (p0—>0—>17P0—>1—>1)
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showing commutativity of the whole square in h<. The remaining elements which
we have not depicted above are all equivalent to some identity morphism on one of
the four objects. This proves the claim.

7.3. (00,1)-Categories. Grothendieck’s homotopy hypothesis has guided us to-
wards a sensible definition of oco-groupoids. How to continue from here on out?
Let us recall first that strict higher categories, say a strict 2-category, is simply
a Cat-enriched category €, i.e., € has a collection of objects and a category of
1-morphisms between these objects. This then also gives a recursive definition: A
strict d-category is a category enriched over a strict (d — 1)-category. We shall do
something similar, which one would liken to something along the lines of weak en-
richment (whatever that might mean precisely). In fact, an (oo, 1)-category shall be
a category weakly enriched in (00, 0)-categories. More generally, an (o0, d)-category
will be a category weakly enriched in (00, d—1)-categories. More precisely, an (o0, 1)-
category will have a set of objects €y, and an oo-groupoid (space) of 1-morphisms
€1, which in turn has objects €19 which will yield 1-morphisms in &, 1-morphisms
%1,1 which constitute 2-morphisms in % and so on. Recursively, an (00, d)-category
will have a set of objects €y and an (00,d — 1)-category of l-morphisms &;. To
encode this rigorously, the first idea we might have is to add a higher categorical
layer by adding another simplicial level:

Definition 7.14. The category of simplicial spaces is the category of simplicial
presheaves Psha (A) = sSet™” .

Remark 7.15. In the literature, a simplicial space X € Psha (A) is also sometimes

called bisimplicial set. We will often, tacitly so, make use of the identifications
Psh(A*?) = Psha (A) = Set2™ *A™

where A*2 = A x A.

Notation 7.16. For X € sSet we may want to emphasize that X has only really one

slot where objects and morphisms can be plugged into. This is why we might be

tempted to write X = X,. On the other hand, for a simplicial space X € Psha (A)
we have two such free slots, so we might want to write X = X,,.

Notation 7.17. Instead of using

Psha(A)(=,—)
as notation for the corresponding hom-set-functor, we shall simply write
Hom(—, —)

if there is no danger of ambiguity. This will be more comfortable whenever we
consider hom-sets between simplicial presheaves.

There are two canonical ways to turn a simplicial set X € sSet into a bisimplicial
set:
Definition 7.18. Let m;: A*? — A for i = 1,2 be the corresponding projections
on the first and second component.
e 7 induces a functor 7} : sSet — Psha(A) which takes a simplicial set X
and maps it to the bisimplicial set X,, with bisimplices
(Xew)ht == Xi

e 7o induces a functor 75 : sSet — Psha (A) which takes a simplicial set X
and maps it to the bisimplicial set X,, with bisimplices

(X*o)kl = Xl
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Remark 7.19. The notation in the above definition is quite suggestive: X., tells
you that we view X as a bisimplicial set, but we really only have one slot where
stuff can be inserted and this slot is the first factor in the product.
Remark 7.20. Let us point out some details:

e Looking more closely at Definition 7.18 we find that

Faxz([n], [m]) = AL, x AL
In particular, for any simplicial space X € Psh(A*?) we have
Hom(AY, x AT, X) = X, 1

by the Yoneda Lemma (recall that Hom(—, —) was introduced in Notation
7.17).

e From Example 4.14 we know that the category Psha(A) is cartesian
closed. In particular, this yields that Psha(A) is enriched over simpli-
cial sets by defining

Map(X,Y) :== Hom(X x 15 & A,Y)
for all simplicial spaces X, where m: A*? — A is again the projection
onto the second factor. By the Yoneda Lemma we then have the following:

Map(AY,, X) = Hom(A7?, x 13 KA, Y) = Y.

ox)

Recall that the injective model structure for Psha (A) exists and that all objects in
Psha (A)iy; are cofibrant.

Applying the Yoneda embedding J 5 to the commutative square
[a +b] &= [p)

PO0—...—a Po

la] ¢————[0]
yields a commutative square of simplicial maps

Aaer Ab

A ¢ A0

However, since sSet is cocomplete, the corresponding pushout A®[] o AP exists
and therefore, by the respective universal property, induces a map

A¢ HAD Ab Aa+b

Furthermore, if 71: A*2 — A is the projection onto the first factor, then applying
77 to the above morphisms lets us obtain a map of simplicial spaces:

b +b
A?* HAQ* A-* A?*

Definition 7.21. A Segal space is a simplicial space € : A°P — sSet which satisfies
the following conditions:

e Fibrancy: € is fibrant with respect to the injective model structure Psha (A);y;.
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e Segal’s special A-condition: € is local with respect to the maps
AL TTae AL, ———— AL
for all a,b e N.

Remark 7.22. Let us unravel the previous definition: As we have seen in the chap-
ter on left Bousfield localizations € being fibrant with respect to the old model
structure and then also demanding that & is local with respect to the given family
of maps will force € into a fibrant object with respect to the new model structure
obtained by Bousfield localization. The fibrancy condition could also be understood
as the aforementioned weak enrichment: Fibrant objects in Psha (A);y; are all those
€ € Psha(A) such that the map € — * has the right lifting property with respect
to all trivial cofibrations in Psha (A)ip;:

D —— @

E —— «

However, the existence of such a lift in particular implies the existence of a corre-
sponding lift objectwise. But this then implies that a Segal space must in particular
be a Kan complex at each simplicial level:

A} ——— Gme

ATL
for all m,ne N and 0 <i < n.

On the other hand, Segal’s special A-condition tells us at which set of maps we
want to (left Bousfield) localize at. This condition demands that the induced maps

Map(AgF, X) ————— Map(AZ, [0 AL, X)
are trivial Kan fibrations in the Quillen model structure sSetquiien. But then

Map(A%? &) =~ Hom(A%? x 15 X A, G) = Bays € sSet

where we avoided, for practicality, to emphasize the free slot by €(,44).. Analo-
gously,

ox)

Map(AZ, [ [ AL, %) = . x5,
AO

Hence € satisfies Segal’s special A-condition if and only if the morphisms

€ (Po—...—a) XE(Pa—...a+b)

Gatbd Ca Xz, Gb

are trivial Kan fibrations. This gives the correct notion of an up-to-equivalence
composition for our potential model of (00, 1)-categories, which is directly motivated
by Definition 7.1.

Theorem 7.23. There is a model structure on the category of simplicial spaces,
which we denote by SeSp, such that all objects are cofibrant and the fibrant objects
are precisely the Segal spaces. In fact, SeSp is given by the left Bousfield localization

SeSp = Lg(Psha (A)inj)
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where S is the family of morphisms
AL [ ao, AL ———— AL
for all a,b e N.

7.3.1. Why are Segal spaces good candidates for (oo, 1)-categories? Motivated yet
again by the construction of the nerve of a category, if @, is a Segal space, then
we view the vertices of € as the set of objects. For x,y € €y, we define

C(x,y) = A% x§, €1 xy A°
where the pullback is taken over the diagram

A5 @y gy S g LA
with dom := @41 , and cod := G40 .. Note that €(x,y) is, in particular, a homotopy
pullback, since €1, is fibrant (a Kan complex). The Kan complex € (z,y) is viewed
as the (o0, 0)-category of 1-morphisms from x to y. More generally, &, is viewed as
the (00, 0)-category of n-tuples of composable morphisms together with a compo-

sition. The composition is the map €, — %1 determined by the order-preserving
function

Poon: [1] = [n], 0<1—0<n

More precisely, €1, is the set of 1-morphisms of €.. and by using the zig-zag of

arrows
€ (po—n)

@1 X@y -+ X&, @1 — Gn

we are able to define a composition

€1

L2851 Xgo...Xgngl — 61

which is unique up to homotopy (after all we pick an arbitrary weak inverse from the
pullback into €,). Concretely, we consider the commutative diagram of simplicial
sets

1] Gn
//’{
a7 N
(Frrenfn) (@0, n)

where € (xq, ..., 2,) is defined to be the iterated pullback
AO X%(;,. %17. X%t,. - XgOY. %17. X%’SY. AO
that results from the span
A° 28 G, NG N B A

The morphism k: A? — %, exists, since the map to the right is a trivial fibration,
and the map to the left is a cofibration in the Quillen model structure on sSet.
Hence this diagram tells us that for any n-tuple

fl fn
o I Tn

(after all this is the same as a map A — € (xo,...,z,) by the Yoneda Lemma)
there exists k € €0 such that

(fg(poql) ... % %(pn_m,))(k) = (f1yeer fn)
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Composition is then defined by
fro fi =€ (pon) (k)

It is nice to think about these notions in a more geometric manner: Let us first
inspect the condition that

%2 i) %1 quo %1

is a trivial Kan fibration. The domain of this map is the space of 2-cells ¢ which

may be depicted by:
Y
2N
T 2

The codomain €; xg, €1, on the other hand, is the space of composable morphisms,

which may be depicted by:
Y
N
x z

The Segal condition then says that every such composable pair of morphisms (f, g)
can be filled out to a complete 2-cell:

where d; = €410 = €(po—2). We think of d; () as the composition of f and g, thus
we will often just write gf. We notice that neither o nor di (o) need to be unique
here, however, we will see that such a composition is unique up to homotopy. The
next condition is that

€3 — 61 X &, €1 X &, 61

is a trivial Kan fibration. The domain of this map is the space of 3-cells which we
can depict by a tetrahedron (or pyramid)
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while the codomain €1 xg, €1 X%, €1 may be depicted by a triple of arrows

X

Y

The Segal condition implies that any such triplet of arrows may be filled out to give
a complete 3-cell:

This assures that if we have three composable morphisms (f, g, k), then it doesn’t
really matter in which order we compose, that is, (hg)f ~ h(gf), which is witnessed
by the above 3-cell. Choosing (f,g,h) = (Liom(q), 9> h), we in particular obtain that
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any two compositions of h and g are equivalent:

w

sy
Thus, we have established how composition works for the space of 1-morphisms
€1,.. In particular, a 1-morphism or path in €;,. is an element in € i, ie., a
2-morphism of € which is invertible up to weak equivalence. Composition of these
2-morphisms is achieved by means of the horn filling conditions of the Kan complex
@1,.- A 3-morphism in ¥ is then simply and element in & » and so on. In summary:

Goe e space of objects of €

60,0 .. set of objects of €

G0 e (o0, 0)-category of 1-morphisms in €

Gn,e . (00, 0)-category of n-tuples of composable arrows in €
61,0 e set of 1-morphisms of €

G1.k . set of (k + 1)-morphisms of €

Gn.k e set of n-tuples of composable (k + 1)-morphisms

Recall that mg: Kan — Set is the functor which takes a Kan complex X € Kan and
maps it to the coequalizer of the diagram

do
—=
X1 Xo
—
dy

Definition 7.24. The homotopy category h1(€) of a Segal space € = G.. is the
(ordinary) category whose objects are given by the set € ¢ and whose morphisms
between objects x,y € €y are

hl(%)(xa y) = Wo(g(xa y)



137

= (AO Xz, G1 x%o AO)

For z,y,z € %y,0 the following diagram induces composition of morphisms, as
weak equivalences induce bijections on 7q:

(A% xz, &1 xy, A°) x (A0 xy, & xi, A) » A xZ By x, AP

€ (po—2)

1

0 x z 0 0z z 0
A X%, €1 X5, €1 X%A A X, €2 X%A

Lemma 7.25. Let € be a model category and suppose that we are given a lifting
problem

—_—

B——D
i €, where i is a cofibration and p is a trivial fibration. Then any two lifts are left
homotopic.

Proof. Suppose that we have two lifts f, f': B — C for the above lifting problem.
We then consider the commutative diagram

BI[B f+f ee,
co+c v . £l . J
Cyl(B) ——— > B D

where Cyl(B) is a cylinder object for B and ¢y, ¢; along with the weak equivalence
Cyl(B) — B constitute the corresponding extra structure. Since this diagram
commutes by construction and the left vertical map is a cofibration, while the right
vertical map is a trivial fibration, we obtain a lift (: Cyl(B) — C, which establishes
a left homotopy from f to f’. O

Corollary 7.26. Let € be a Segal space and let f,f' € €10 be composable 1-
morphisms. Then any two choices for a composition of f and f' are homotopic,
that is, there exists F' € €11 so that €1 g1 (F) = f and €y 40 (F) = f'. In particular,
composition of 1-morphisms is a well defined map in the corresponding homotopy
category.

Proof. This follows immediately from the previous proposition, since taking a com-
posite for f, f/ boils down to the lifting problem

b ————— %
R

13

AO W %1 Xgo %1
O

Proposition 7.27 ([31]). For any Segal space € = G.e the homotopy category
h1(€) is a category.
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Proof. In order to verify associativity we produce particular choices of compositions
which give equal (not just homotopic) results. This is fully sufficient by the previous
corollary. Let k € €3 be such that

(%pO—ﬂ X %p1—>2 X %p2—>3)(k3) = (f7gah) € Cg(w7m7yvz)

Any such k determines compositions gf = g3 o(k) and h(gf) == a1 0(k), as well
as hg == G ,o(k) and (hg)f = Ga20(k). Now let o := G4 (k) € G20, then o
satisfies

B0 o(0) = h, Car0(0) = (hg)f, Cazo(o) =9gf

In particular, o witnesses the identity h(gf) = (hg)f, as desired. Identities in
our category will be represented by 1, := @0 o(x) for all z € €p. To show that
flw ~ f for f e €(w,x), let k= B 0(f). Then

(Epos1 x Epi12)(k) = (1w, f), Gar0(k) = f, G 0(k) = f, Ga10(k) = 1y
and therefore f1,, = f. The other identity follows analogously. O

Example 7.28. Let € be an (ordinary) small category. Let us view its corre-
sponding nerve as the bisimplicial set NG,,. Then NE,, is a Segal space and we
have an equivalence of categories

H1(NCex) * €

Definition 7.29. Let € be a Segal space.
e A l-morphism f € €(z,y) is called invertible if its image under

(g(l’,y) # 7T0%(I7y)

is an isomorphism.

e Two l-morphisms f,g € €(z,y) are called homotopic, if they lie in the
same connected component of &(x,y), that is, if both these arrows rep-
resent the same equivalence class in mo&(z,y). In that case, we write
f~g

Unfortunately, Segal spaces do not quite provide the correct notion of (oo, 1)-
categories, albeit they provide a canonical composition that is unique up to weak
equivalence. There are two reasons for this: The first of these reasons is that & , is
a space rather than a set of objects. The second problem is that if we are given two
Segal spaces €,9, the set of natural transformations € — 2 should be exactly
the collection of oco-functors from the oo-category € to the oo-category & (if we
assume Segal spaces are the correct model for (o0, 1)-categories). We would expect
that the model structure on SeSp has as its set of weak equivalences exactly those
oo-functors which are fully faithful and essentially surjective (to be defined below)
in a homotopical sense. In other words, we would want the weak equivalences of
SeSp to be exactly equivalences between oco-catgories.

Definition 7.30. Let € and & be Segal spaces. A natural transformation (: € —
D is called Dwyer-Kan equivalence if
e the induced map h1(¢): h1(€) — h1(D) on homotopy categories is essen-
tially surjective.
e for each pair of objects z,y in € the induced map € (x,y) — D((z, Cy) is
a weak equivalence.

Remark 7.31. We realize that the map b1 (¢) is well defined. Indeed, what we really
need to check is that for any equivalence class [f] € mo(€1) we have that [(1,0(f)]
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is independent of the representative. But this follows from commutativity of the
square

(1.0
€10 ——— Dipo

G1,1 T) @1,1

where the upwards pointing vertical arrows are the maps €; 4 and 9 4; for j =

0, 1. Similarily, the induced map €(z,y) — D ((x,Cy) is well defined by naturality
of .

Definition 7.30 is of course motivated by the standard notion of an equivalence
between categories. We shall now work towards a model structure that incorporates
Dwyer-Kan equivalences as its weak equivalences.

Definition 7.32. For @,, a Segal space let
(gequiv — 1

be the inclusion of the connected components of vertices that are invertible (see
Definition 7.29).

The identity morphisms (up to homotopy) of a Segal space are induced by the
degeneracy map €s0,: Goe — €1o and its 0-th component

Cs0,0: 60,0 — 61,0, T 1,
This therefore turns out to be an inclusion
€ — %equiv

Definition 7.33. A Segal space & is called complete if the map €y — Gequiv IS @
weak equivalence of simplicial sets.

The idea of the above definition is that if a morphism is an isomorphism then
it is already a morphism in ®y. This is somewhat akin to what it means for an
ordinary category to be skeletal. Recall that a category is called skeletal if all its
isomorphisms are identities. However, any (ordinary) category is equivalent to a
skeletal one, so this is not really a restriction in general (see the Nlab article on
Skeleton).

Example 7.34. Let € be an (ordinary) category. The simplicial space NE., is a
complete Segal space if and only if there are no non-identity isomorphisms in €.

Yet again, we want to shift this into a model theoretic picture, encapsulating the
notion of complete Segal space by means of a left Bousfield localization. To this end,
let us consider the category J(1) with two distinct objects and one isomorphism
between these. This category is called the walking isomorphism. If we map the
walking isomorphism into an arbitrary category &, we obtain all the isomorphisms
of €. More precisely, we have an isomorphism of categories

g =, (gl

where €* is the maximal subgroupoid of €. Rezk, in his paper [31], then proved
the following non-trivial theorem:

Theorem 7.35. A Segal space € is a complete Segal space if and only if € is local
with respect to the (unique) morphism

NT(1))ew —— A,


https://ncatlab.org/nlab/show/skeleton#definition
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In other words, € is complete if and only if

RMap(AY,, €) ————— RMap(N(T(1))ex, F)

ok )

is a weak equivalence of simplicial sets.
In other words, we can make the following equivalent definition:

Definition 7.36. A complete Segal space is a simplicial space €: A°? — sSet
which satisfies the following conditions:
e Fibrancy: € is fibrant with respect to the model structure on SeSp (in
other words, € is a Segal space).
o Completeness condition: € is local with respect to the unique map (A,
is terminal)

N(I(1))er — AL,

Theorem 7.37. There is a cartesian model structure on the category of simplicial
spaces, denoted by CSS, in which all objects are cofibrant and the fibrant objects
are precisely the complete Segal spaces. In fact, CSS is given by the left Bousfield
localization

CSS = LS/(PShA(A)inj)
where S’ is the family of morphisms

b +b
Af* ]_[A‘.)* Ao* Af*

along with the unique morphism
m(j[]‘])'* - A(.)*

In particular, the collection of weak equivalences in the model category CSS is pre-
cisely given by the Dwyer-Kan equivalences.

Finally, we have the following definition:

Definition 7.38. An (o0, 1)-category is a fibrant object in CSS, that is, a complete
Segal space.

The above theorem also tells us that the model category of complete Segal spaces
is a cartesian closed model category. This means that the internal hom functor
respects the given mdoel structure, i.e., it is a right Quillen bifunctor. Therefore,
we have a notion of a derived hom in the given model structure. Since all objects
in CSS are cofibrant, we have

RHom(®, D) ~ 2%

for all complete Segal spaces @ and all bisimplicial sets €, where 2% denotes the
corresponding internal hom in bisimplicial spaces. In particular, for any pair of
oo-categories €, D we get an oo-category of functors 2¢:

Definition 7.39. Let €, be (o0, 1)-categories (complete Segal spaces).
e An oo-functor (or (0o, 1)-functor) from € to P is a natural transformation
€ — D.
e An co-natural transformation (or (oo, 1)-natural transformation) between
oo-functors with domain € and codomain 9 is a homotopy h: € x Al, —



141

2. The domain and codomain of the co-natural transformation A is read
off of the commutative diagram
@ xj(d") % xj(d°) @ x AV,

& x A9, € x AL,

h

|

' D '
as the bottom left and bottom right maps.

12
I

Remark 7.40. Let us study quickly why the definition above really yields the correct
notion of co-functors: Let (: € — 2 be an co-functor between co-categories. We
then, in particular, have maps on objects and 1-morphisms

€o0,0: Go,0 — Do,0, C0: 1,0 = Do

We shall abuse notation and always write ¢ instead of (o 0, (1,0, etc. whenever it is
clear from the context. A morphism (f: z — y) € €1, is mapped to a morphism
Cf: Cx — Cy, which follows from naturality of (:

C1,0
€10 ——— Dip

cod dom dom cod

60,0 — Do,0

G
In particular, functoriality follows from commutativity of the diagram
€1 x5, €1 G D1 X, D1
€ (po—1)XE(p1-2) D(po—1)XD(p1>2)
D) S R Ds
. B(Po—2) D(po—2)
e ——— o
61

More precisely, let k € €29 be such that
(%pOﬁl X %p1ﬁ2)(k) = (fa g) € %(x,yv Z)

or put geometrically
Y
f g
|
af

r——z
Now ¢ induces a 2-simplex (k € 9, o which produces the following identities

Do o(Ck) = Cg, Daro(Ck) = C(gf), Dz 0(Ck) =Cf
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which follows from naturality:

¢
€20 ———— Doy

61,0 — D10

Rephrasing this geometrically yields

and therefore (k witnesses the identity ((fg) = (g(f. The same procedure works
to show that { preserves identities.

Remark 7.41. Also the notion of co-natural transformations is seen to have the
desired outcome. Passing to the homotopy 1-category results in a natural trans-
formation between the induced functors. This is analogous to the construction in
Remark 7.13. Indeed, any co-natural transformation

1xd?

L — 2 Fx A

1
NN

h

|

> N
C1i=h(1xdL,) ? Cai=h(1xdJ,)

€ x A9

12
12

yields, for every 1-morphism f € €1, a quadruple of maps

1xdl, Fx1
X
Al x A0 AL xAl T s exaAl M g
1xd2,
di, x1 Fx1
X
A x Al = Al xAl T s exaAl M g
d?, x1

which in turn gives rise to a square of 1-morphisms in &

¢1(domf) % (2(domy)
G f Cf

Gi(codf) T hea G2(cod f)

Again, in order to show that this diagram commutes it is enough to show that
hi(AL, x Al,) is the category whose formal graph is a commutative square. This
is immediate however, since Al, x Al is constant in the second simplicial direc-
tion and thus elements in (AL, x Al);1 = Al x Al really just tell us that both
compositions are identical.

From the previous considerations we readily obtain the following:
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Corollary 7.42. Let €, be (w0, 1)-categories. Then any co-functor (: € — D
induces a functor

H1C: 516 — 1D
In particular, any co-natural transformation h: (1 — (5 induces a natural transfor-
mation

b1(h): h1C1 — 1o

7.3.2. The Rezk nerve. We have seen that the ordinary nerve operation applied
to some category € and then viewed as a simplicial space does not in general
yield a complete Segal space. However, since complete Segal spaces are our cho-
sen model for (oo, 1)-categories we should better provide for a proper inclusion of
the category of (small) categories into the the full subcategory of complete Segal
spaces. Luckily enough, there is an improved version of the nerve functor called
the Rezk nerve: Let (€, %) be a pair consisting of a category € together with a
wide subcategory 7 of weak equivalences. The simplicial space N (€, #"), called
Rezk nerve or classification diagram of (€, %), which, if evaluated in the first
simplicial direction by [m] € A yields as a simplicial set the (usual) nerve of the
wide subcategory we(%[m]) c @™ which has as its morphisms only those natural
transformations which are weak equivalences objectwise. In other words,

(NG, W) 1= N(we(F™))
Ezample 7.45. For a category € we may apply the Rezk nerve to the pair (€,€*),
where € is the maximal subgroupoid of €. This yields a functor
M*: Cat — Psha(A), € — N(iso(€*)).
The preceding example is very important:
Theorem 7.46 ([31] Theorem 3.7). The Rezk nerve
N: Cat — Psha(A)
is fully faithful. Moreover, there are natural isomorphisms of bisimplicial sets
NP (B x D) = NCC x N°D,  N°(D%) = (NPD)™
for categories €,9D. In particular, a functor f: € — D is an equivalence of cate-

gories if and only if N f is a weak equivalence of bisimplicial sets (wrt. the injective
model structure).

Remark 7.47. It may be shown that M (€, #") satisfies Segal’s special A-conditions
(this follows from the 2-out-of 3 property, see [8]). Moreover, N1 (€, #’) is complete
if and only if the homotopical category € is saturated, that is, a morphism in € is
a weak equivalence if and only if it is an isomorphism in the homotopy category.
However, M* (€, #") does not necessarily satisfy the fibrancy condition to make it
into a complete Segal space. Nonetheless, treating M* (%, #") as an oco-category,
we obtain the following interpretation:

e Objects are precisely the elements in
N (G, W )o,0 = N(W )y = ObE
e l-morphisms are elements in
NZ(C, W )10 = N(we(BH))y = Mor®
which is what we would expect of any reasonable way to embed an arbi-
trary category into the setting of co-categories.

If we really want to realize ™ (€, #") as an (0, 1)-category, we have to force the
fibrancy condition by taking some fibrant replacement of M (€, #"). The resulting
complete Segal space will again be denoted by M* (€, #").
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7.4. (o0, 2)-Categories. Before getting into the meat of this section, let us start
off by recalling the notion of bicategory: Let us briefly recall the definition of a
bicategory:

Definition 7.48. A bicategory is a tuple
(‘%7 1707 a? A7p)
comprised of the following data:

e A comes equipped with a collection of objects Ob& = ZBy.
e For each pair of objects b,b’ € B we have a hom-category % (z,y). The
identity morphism in %(x,y) for an object f € % (z,y) will be denoted by

1;.

e The objects in B(x,y) are called 1-morphisms, and the collection of all
such 1-morphisms is denoted by %;. The morphisms in the category
% (x,y) are called 2-morphisms.

e We have composition functors

c: RB(ba,bs) x B(b1,b2) — FB(b1,bs)
(9, f) = g00f
(B, a) = Ba
for all objects by, by, b3, by € By and unit functors
1p: » > RB(b,b)
from the terminal category * into the category 9(b,b), which pick out an

identity 1-morphism 1, for all b € %B,.
e We have natural isomorphisms

idxe

%(b3,b4) X 93([)2,[)3) X 93([)1,[)2) .%(bg,bz;) X %(b17b3)

cxid c
by ,by,b3,by

%(bg,b;;) X %(bl,bg) %(b17b4>

c

%(bl,bg)x* *X%(bl,bg)

idX]lbl ]lb2><id /\bl,bQ
%z@ /
gg(bl,bg) X gg(bl,bl) 4c> gg(bl,bg) gg(bg,bg) X gg(bl,bg) _— gg(bl,bg)

In particular, this gives us invertible 2-morphisms

angs: (hOg)Of S hO(gOf)

L

pr: fD]ldomf
/\fl ]lcodef

L

f
f



e In particular, we demand that the following diagrams commute:

((kDh)Og)Df ols (kO(hOg))Of
(kDR (g0f) *O((hOg)Of)
kO(RO(gLf))
(gD]ldomf)Df 2 gD(]lcodef)

gf

Remark 7.49. Any monoidal category € may be interpreted as a bicategory B% as
follows:

e B% has only one object *.

e The category of 1-morphisms B® (%, ) is defined to be €.

e The composition law is given by the tensor product:

®R:ExC€—>C
Conversely, any bicategory with only a single object is canonically a monoidal

category.

An (o0, 2)-category will be a homotopical analogue of a bicategory with infinitely
many layers of morphisms, yet only two of these layers are non-trivial. To this end,
we continue in the exact same manner as in the previous chapter. First we shall
add another categorical layer by adding one more simplicial level:

Definition 7.50. The category of bisimplicial spaces is the category of presheaves
PShA (sz).

Notation 7.51. We shall again write Hom(—, —) for the hom-set bifunctor of the

category of bisimplicial spaces.

We may then consider the projections m;: A*3 — A for i = 1,2,3. These give
rise to maps
sSet ——— Psha (A*2)

Extending on the notation we introduced in the previous chapter, a bisimplicial
space X € Psha(A*?) may be written as X = X,... For the simplicial set A" we
then have three possibilities of viewing it as a bisimplicial space: AZ,,, A%,  and

k%) * O %

A .. The category of bisimplicial spaces is enriched over sSet by defining
Map(X,Y) := Hom(X x 73 XA,Y)
for all X,Y € Psha(A*2?). We may then apply 77 and 73 to the induced maps

A HAO Ab Aaer
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so as to obtain morphisms
b P b
a %k a+
A-** HA?** A-** Ao**
¢a,b
Yo

b +b
Ago* HAQ" A Af.*

* @Kk

In particular, both A?,, and AY,, are terminal, so there are unique morphisms
m(j[l])'** # A?**
N(I[1)rer —— AL,

Definition 7.52. A complete double Segal space is a bisimplicial space € : (A*?)°P —
sSet such that
e Fibrancy: € is fibrant with respect to the injective model structure on
PShA(AX2).
e Segal’s special A and completeness condition: € is local with respect to
the maps

a,b c
b Poir X ALk b
(Af** HA(.)M Ao**) X Aio* A?j* X Aio*

eLhxA

b :** +b
(Ago* HAQ.* A*o*) X Af“ A?o* X Af**

N(T[1]) e A,

AS**XC*‘* AC % AO

® kX * @k

Af** X m(j[l])*‘*
for all a,b,c e N.

Remark 7.53. One may certainly drop the completeness conditions to arrive at a
notion of double Segal space.

Remark 7.54. Let us break down the main ideas of Definition 7.52: Segal’s special
A condition boils down to the statement that both €.ee and Gece are Segal spaces,
i.e., both maps

%c,aer % (gc,a X%C’g (gc,b

%aer,c _— (ga,c X%Q7C (gb,c

are trivial Kan fibrations for all a,b,c € N. The completeness condition boils down
to saying that both @.0e and € .. are complete Segal spaces for all ¢ € N.

Theorem 7.55. There is a model structure CSSY*'® on the category of bisimplicial
spaces in which the fibrant objects are precisely the complete double Segal spaces.
In fact, this model structure is obtained by means of the left Bousfield localization

Cssgple = LS (PShA(AX2)inj)

where S is the family of morphisms as given in Definition 7.52.
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Yet again we find ourselves not fully satisfied with (complete) double Segal
spaces. The problem here is similar as the one we had with Segal spaces. A
double Segal space encodes the information of a homotopical double category. Re-
call that a double category has objects, horizontal morphisms, vertical morphisms
and 2-morphisms (squares). Suppose € is a (complete) double Segal space. We
think of €y,0 as the space of objects, €1 as the space of vertical morphisms, €1 o
as the space of horizontal morphisms, and 1,1 as the space of squares. Indeed, the
2-morphisms (squares) are encoded by diagrams of the form:

€, g1 (¥)EBL0

B0,0 2 Car a1 (V) Bao,q1 () € Bo,0

Fg1 1 (¥)EG0,1 ﬂwe%m €40 1 (¥Y)EB0,1

G0,0 2 Car a0 (V) Bao,q0 (V) € Bo,0

€, 40 (¥)EB10

On the other hand, when we picture a 2-morphism in a 2-category we liken it
more to something as
e

In other words, we do not want to have non-trivial vertical morphisms, but only
horizontal ones. Therefore, it is natural to demand or try to force the simplicial
space Gpee 10 be essentially constant. Yet again, we shall encode this by means
of a left Bousfield localization. For m = ([m1], [mz]) € A*2, let m € A*? be the
bisimplex defined by

R 0], if 3j <i: withm; =0

[ml] _ [ ] J

[mi], else

for ¢ = 1,2. More concretely, if m; = 0, then m = 0, but if m; # 0, then m = m.
This gives rise to a canonical map

m-———m

which maps m; — m; for all <. In turn, we may plug this map into the functor
T} o K axz, where 1 2: A*3 — A is the projection onto the first two factors, to give
us a morphism

* * b
T o R aem ————— ] 5 K axemm

Definition 7.56. A 2-fold complete Segal space is a bisimplicial space € : (A*?)°P —
sSet such that

e @ is fibrant with respect to the model structure as given in Theorem 7.55.
e @ is local with respect to the family of morphisms

7TI72JZszm —— T K axem
for all m € A*2,

Remark 7.57. Dropping yet again the completeness condition in the above definition
yields the notion of a d-fold Segal space.

Remark 7.58. € being local with respect to the above family of maps means that
the induced maps

RMap(7] 5 & ox2m) —————— RMap(7] 5 & px2m, €)
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are weak equivalences of simplicial sets. However, this exactly boils down to saying
that we have weak equivalences €o .o — €00, for all m € N. This is what we
meant by saying that €. . is essentially constant.

Theorem 7.59. There is a model structure CSS%IOb on the category of bisimplicial
spaces in which the fibrant objects are precisely the 2-fold complete Segal spaces. In
fact, this model structure is obtained by means of the left Bousfield localization

CSS§°" == Lg(CSSy™)
where S is the family of morphisms as given in Definition 7.56.
Remark 7.60. The model structure on CSSE°" is referred to as the globular model

structure, while the model structure on CSS‘Q”Dle is called the multiple model struc-
ture.

Definition 7.61. An (o0, 2)-category is a fibrant object in CSS5'°".

In a 2-fold Segal space we have

€, g1 (¥)EB10

C0,0 2 Gar a1 (V) Bao,q1 () € Bo,0

E g1 1 (¥)EB0,1>60,0 ﬂwe%l,l B0 1 (¥)€B0,12%0,0

~

Ba0,a0 (1) € Bo0

G0,0 2 Car a0 (V) @, 40 (¥)€B1,0

By the conditions imposed on what it means to be a 2-fold Segal space, the dotted
vertical arrows are essentially forced to be just identity maps, up to homotopy, since
60,16 = 60,0,0-

Definition 7.62. The homotopy bicategory h2% of a 2-fold (complete) Segal space
6 = Geee is the bicategory which has as objects the set €y 0,0 and for z,y € €o.0,0
the hom-category

hQ%(xvy) = bl((—g(xa y))
where € (2, y)es is the complete Segal space defined by
A X%o,-,- G100 x%o,” A

where A denotes the terminal object in Psha(A*2). Horizontal composition is
then defined by means of the following dotted arrow

0y Y 0 0y Y z 0
(A Xg(),o,. %1’.’. X%O,c,o A ) x (A X%O,c,o %1’." X%O,o,o A )

PR

(AO X s Cloe Xz, ., AO) (AO XGoae Clioe XGo0s Clee Xg, . AO)

0,0,0

0y z 0
A X%O,o,o %2’.’. Xgo,o,- A

Remark 7.63. According to [8] the previous definition indeed yields a bicategory.
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7.5. (o0, d)-Categories. At this point the idea for (oo, d)-categories should be clear.
We add as many new simplicial layers as needed so as to capture all the necessary
complexity of an (00, d)-category.

Definition 7.64. A d-dimensional simplicial space is a functor X: (AX4)°P —
sSet. The category of d-dimensional simplicial spaces is the category of simpli-
cial presheaves Psha (A*?).

Notation 7.65. It is clear now that notation of the form

A/:l*.”*7 A’:”.,,.*7
is not so lucid anymore. Hence we shall introduce the following: Let A < {1,...,d}

and consider the functor category A4 := Fun(A, A), where A is viewed as a discrete
category. There is an isomorphism of categories

A4 = A X4l

which takes a functor n: A — A to the multisimplex (n(a))sca. Essentially, A4
is the corresponding sub-product of A*?¢, where the product is only taken over the
elements of A. We may then consider the projection maa: A*? — A4 and define
the map jra as the composition:

*

AL X pan(Ad) — T4 pan(AXd) A P (A%

where 7 : AX4 x A — A denotes the projection onto the last factor.
In particular, if ma,: A — A is the projection onto the k-th factor (i.e.
TAk = Tatr ), then define the composition
AP sSet —2F Psh(A*X4) — 2 Pshp(A*9)

tobe ja i. Also, for future reference, if A < {1,...,d}, then define A® := {1,...,d}\A
to be the complement of A in {1,...,d}. With this notation in hand, we may for
example define partial evaluation of X € Psha(A*9) at an object n € A4 denoted
X (n) € Psha(A4"). Moreover, we may sometimes just write j for the above embed-
ding without referring to the explicit subfactor, if there is no danger of ambiguity.

Yet again the commutative square

[a + b] Pa—...—a+b [b]

PO0—...—>a Po

la] «————10]

induces maps

a,b
jarlal 11, o darlt] ——— jaxla+1b]

Moreover, for each 1 < k < d there is a unique map
By ——— jas[0]

where

Ek = jAng(j[l])
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Finally, for a multisimplex m € A*?¢ define a multisimplex m € A*¢ with compo-
nents

[i] [0], ifdj<i: withm,; =0
m;| =
[m;], else
This yields canonical maps
m-———m

and applying the functor j: A*X? — Psha(A*?), we get morphisms
jm—— % ji

Definition 7.66. A d-fold complete Segal space is a fibrant object € € Psha (A*%);y;
such that

e Segal’s special A-condition: € is local with respect to the family of maps
jnx (jarlal 11, o danlb])
for all a,b € N,n € AR and for all 1 < k < d, where we recall that

(k)= {1,..., d}\{k}.

o Completeness condition: € is local with respect to the family of maps

anLpa’b'k

Jjn x jakla + b]

jnxcg

jn X Ek jn X jA,k[O]

for all 1 <k < d and ne A1, where Ay_; == {1,...,k—1}.
e Globularity: X is local with respect to the family of maps
jm —— jm
for all multisimplices m € A*?,

Remark 7.67. There are obvious definitions for what d-fold Segal spaces, d-uple
Segal spaces, d-uple complete Segal spaces are.

Remark 7.68. Recall that any category of presheaves is cartesian closed with the
induced cartesian structure from Set. This implies that the product ¢ x — is a
left adjoint functor (for any object ¢ in such a presheaf category) and therefore
preserves colimits. In particular, we have

jnx (jaxlal 1T daslt) =jma) [T i)
Ja,k[0] j(n,0)
for all n € A} and all [a], [b] € A, where (n,a) is the multisimplex {1,...,d} —
A such that (n,a)|3c = n and (n,a)|; = [a] and analogously for (n,b). In
particular, this implies that Segal’s special A-condition boils down to there being
weak equivalences
%(n7 a+ b) —_— (g(nv CL) X% (n,0) Cg(nv b)

The completeness condition, on the other hand, boils down to saying that each
bisimplicial space € (n,—,0, —), with 0 € A*(4=k) the zero simplex and n € A%* is
a complete Segal space. The globularity condition forces that if the k-th component
of the multisimplex m € A*? is 0, then we have a weak equivalence

%mhm:mk—lyowqo" - %m,o
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Theorem 7.69. There are model structures CSSg10b and CSS;ple on the category of
d-dimensional simplicial spaces in which the fibrant objects are precisely the d-fold
complete Segal spaces and the d-uple complete Segal spaces, respectively. Both these
model structures are defined by means of the corresponding left Bousfield localiza-
tions.

Definition 7.70. An (co,d)-category is a fibrant object in CSSgl()b (or a fibrant
object in CSS;plC if we distinguish between globular infinity categories and multiple
infinity categories).
Notation 7.71. We shall write
lob lob
Cat%oo’d) = CSS§
uple uple
Cat(%d) = CSS)P
In particular, for d = 0 we have

Cat(w,0) = Grpd,, = sSetquillen

7.5.1. Interpretation of d-fold Segal spaces as higher categories. How exactly does
a d-fold complete Segal space really encode what it should mean to be an (oo, d)-
category? The first condition in Definition 7.66 means that there are d different
directions in which we can compose. An element of €y, with k € A*? should
be thought of as composition consisting of k; morphisms in the i-th direction. The
third condition (globularity condition) ensures that any d-morphism has as source
and target two (d—1)-morphisms which themselves have the same source and target
(up to homotopy). In general, if we have a d-fold (or d-uple) Segal space €, we
should think of the set of O-simplices of the simplicial set g, with 0 € A*? the
zero-multisimplex, as the objects of our category, and vertices of the simplicial set
%1,.0,_; as i-morphisms for 1 < i < d, where 1; € Al with 1,(j) = 1 for all
j, and 04_; € A*(@=9) the corresponding zero-multisimplex. In the case of an uple
(o0, d)-category, we have several different kinds of é-morphisms. Indeed, for each
subset A < {1,...,d} with |[A| = i, the vertices of the simplicial set €1,,0, 4
also form i-morphisms, where 14 € A4 with 14(a) =1 for all a. In the globular
case, however, the vertices of €1, 0, , are the only ¢-morphisms. In both cases,
the vertices of the Kan complex @1, yield the collection of d-morphisms in €
and then higher morphisms are given by the morphisms of this Kan complex. In
particular, (d 4+ 1)-morphisms in & are given by elements of the set €1,,1, while
(d + 2)-morphisms are given by elements €1,,2 and so on.

Ezample 7.72. A 3-morphism in a tricategory may be depicted as
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whereas a 3-morphism in a 3-fold Segal space € (an element of the set €1,1,1,0)
may be depicted by

° °
RPN / BOPN
€%0,1,0 €%1,1,0 i €%0,1,0
. A .
. i .
/ il
A n A
° €61.,0,0 'H‘ °
~ i N
I
N i
i n
€%0,0,1 n €%1,0,1 €%0,0,1
I
I i
1 1
I 1
€60,1,1 u €61,1,1 1 €60,1,1
I ¥
I 1
" I
€%0,0,1 €%1,0,1 ! €%0,0,1
I
I i
1
i i}
I
! €%1,0,0
° T °
~ ¥ / %
N i}
. 1 .
I
€60,1,0 i €€1,1,0 €€0,1,0
° .
€61,0,0

Here the dotted arrows are vertices in €p,1,1 ~ %0,0,1 =~ %0,1,0 = ©0,0,0, While the
dashed arrows are vertices in €1 0,1 =~ €1,0,0. Thus contracting along the dotted and
dashed arrows, we get to the picture of a 3-morphism in an arbitrary tricategory.

Definition 7.73. The homotopy category of a d-fold Segal space € is the (ordinary)
category h1%, which has as objects the vertices of €o for 0 € A*¢. For each
T,y € Go, we let

Fr.y) = A xE, Gy, xY, A

be the (d — 1)-fold Segal space of morphisms from z to y, where 11,0, € A{!} are
the evident simplices in the first simplicial direction in the product A*?. The set
of morphisms

(01%)(x,y)

from 2 to y is then given as the set of isomorphism classes of objects in by (€ (x,y)),
which is already defined by induction. Composition is defined using the Segal
condition in the first index.

Definition 7.74. The homotopy bicategory ha® of a d-fold (complete) Segal space
% is the bicategory which has as objects the vertices of €g for 0 € A*? and for
x,y € o the hom-category

hg%(l’,y) = bl((g(xa y))
is the homotopy 1-category of the (d — 1)-fold Segal space € (z,y) defined by

A Xo, C1s x%ﬂs A°
where S = {1,3,4,...,d}  {1,2,...,d} and 05 € A® is the O-multisimplex, while
15 € A% is given by 15(s) = [0] if s # 1 and 15(1) = [1]. Here A® denotes the

terminal object in Psha(A*?). Horizontal composition is then again defined by
means of the Segal condition in the second argument.
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Remark 7.75. More generally, if € is an (o0, d)-category, then we can define a
d-category hy % as follows:

e For k < d, the k-morphisms of h4€ are the k-morphisms of €.
e The d-morphisms of h;% are given by isomorphism classes of d-morphisms
in 6.
In [24] Lurie states that this construction can be characterized by a universal prop-
erty: Let 9 be a d-category, which we can regard as an (o0, d)-category which has
only identity k-morphisms for k > d. Then functors (of d-categories) from b, € to
D can be identified with functors (of (0o, d)-categories) from € — D, that is,

Hom(92,h,%) ~ RHom(9, €)
Definition 7.76. A morphism (: € — 9 of d-fold (d-uple) Segal spaces is a Dwyer-
Kan equivalence if

e the induced functor h1(: h1 € — h1D is essentially surjective.
e for each pair of objects z,y in €, the induced morphism €(z,y) —
D(Cx, Cy) is a Dwyer Kan equivalence of (d — 1)-fold Segal spaces.

Remark 7.77. The (00,d — 1)-category € (z,y) in the above definition is called the
(00,d — 1)-category of morphisms in € from x to y.

7.5.2. Truncation, Extension and Loopings. Given an (00, d)-category, for k < d,
we may consider its (o0, k)-truncation, or k-truncation, which is the (oo, k)-category
obtained by discarding all the non-invertible m-morphisms for k < m < d.

Definition 7.78. The k-truncation Ty : SeSp,; — SeSp;, sends a multisimplicial space
@ to

Tk€ = o,
where Q11 ay € AF+1-d} §g the corresponding zero-multisimplex.
Remark 7.79. If € is complete, then its k-truncation € is complete.

If we have an (o0, d)-category, then we can always promote this to an (co,d + 1)-
category by letting the (n + 1)-morphisms be only identities.

Definition 7.80. The extension functor €: SeSp,; — SeSp,,; sends a multisimplicial
space € to the mutisimplicial space

E% € Psha (AX(@HD)
that is constant with respect to the new factor in the product A*(@+1)

Lemma 7.81. If € is a complete d-fold Segal space, then €€ is a complete (d+ 1)-
fold Segal space.

Proof. See [8]. O

Lemma 7.82. The extension functor € is left adjoint to the d-th truncation functor
T4, that is, we have a diagram of adjunctions

¢
SeSpd L SeSpd_H
Tq

Proof. Tt suffices to show that we have an adjunction on representables, since € is
cocontinuous: However, for each multisimplex n = (n1,...,n4411) € A*d A we
have

Hom(€&n,¥) ~ €(n1,...,n4,0,n4+1) = Hom(kn, T,€)
where &: A*? x A — Psha(A*9) is the Yoneda embedding. O



Definition 7.83. Let € be a d-fold Segal space, and let x be an object in €, that
is, x is a vertex in Gg.

e The looping of € at x is the (d — 1)-fold Segal space
0, = €(z,2) = A° X%, C11 Xq, A°

e For 1 < k < d, the k-fold iterated looping of € at x is the (d — k)-fold
Segal space

Q' = Q. (2 1%)

where we view x as a trivial k-morphism via the degeneracy maps, and
006 =@.

7.6. Symmetric Monoidal (o, d)-categories. When we were concerned with
defining (oo, d)-categories, the main idea was to add extra simplicial layers, i.e.,
every simplicial layer, say the i-th, encoded the notion of a non-trivial space of
i-morphisms. On the one hand this was possible since simplicial sets are generaliza-
tions of (small) categories (after all we have a fully faithful embedding Cat — sSet).
On the other hand, the combinatorial nature of simplicial sets allowed us to work
with these notions rather comfortably. In order to encapsulate the notion of sym-
metric monoidality a similar machinery will be at play. This time we shall not
resort to the simplex category A as the underlying source of structure, but rather
make use of Segal’s Gamma-category I

Definition 7.84. Segal’s Gamma category I is the opposite category of the skeleton
of the category of finite pointed sets Fin,, which has as objects the finite pointed
sets () .= {*,1,...,1} for | € N and morphisms are just functions {I) — (k) which
fix x. In other words,

I' == Fin2?

Lemma 7.85. Any morphism g in Fin, may be written as a composition
g=/foo

where [ is a non-decreasing function, while o is a permutation (bijection).

Proof. Take a morphism as below

* *
(] [ ]
[ ] (]
L] [ ]

i

and draw the dotted line so far to the right so that there are no more intersections
between the arrows to the right of the dotted line. Taking the morphism that
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results from cutting off to the right of the dotted line yields an order preserving
morphism f, while the morphisms resulting from cutting off everything to the left
of the dotted arrow results in a permutation o. O

We shall see that certain kinds of functors €: I'P? — Cat(y, q) will give the
correct notion of symmetric monoidal (o0, d)-categories. To this end, we consider
the maps

iz (my = (1), j— 6y
in Fin,, where §;; is the Kronecker-§ with d;; = = for ¢ # j. Letting jr be the

composition

I 20 Psh(I') — T2, Psha(T)

we may embed the morphisms ¢; and then make use of the universal property of
the coproduct to obtain the dashed arrow

]<1> _ j<1>
where we have again just written j instead of j, since there is no danger of am-

biguity. Since Psha(I") is yet again simplicially enriched in the usual manner, we
may look at the induced morphism

(815:07n) 0

Map(j{m), €) = €(m) ————= (€(1))™ = Map([] j(1),¥)

j=1
Where 8} := €6;. In particular, for every I € N there is a map in Fin, with
pi=p: =),  x#Fj1
The induced map ¢' := ¢ will be responsible to encode multiplication:
&) — &)

In fact, by means of a left Bousfield localization we will force the maps €(m) —
(€{1))™ to be weak equivalences so that the zig-zag of morphisms

(@)™ = Gm) — 2 B()

will give rise to the notion of thinking of €{m) as the space of m-tuples that may
be multiplied, while ¢' will be the multiplication operation itself.

Definition 7.86. A symmetric monoidal (o0, d)-category is a functor €: [P —
Psha (A*9) such that

e ¥ is a fibrant object with respect to the injective model structure on
PShA(AXd X F)inj-

e € is local with respect to all the maps in Definition 7.66 (where we take
the tensor product of each of these maps with the identity on j{I) for all
leN).

e Segal’s special I'-condition: € is local with respect to all the maps

! .
gnx 115 — I jnx )



for allme A*4 and [ € N.

If € is a symmetric monoidal (oo, d)-category, then we will call €(1) the (underly-
ing) symmetric monoidal (00, d)-category.

Remark 7.87. Let € be a symmetric monoidal (oo, d)-category. Let us elaborate
on what this entity really is about. First of all the partial evaluation €{I) is an
(o0, d)-category for all choices | € I'. The statement that € satisfies Segal’s special
I'-condition boils down to the following: Note first that

l l
g ] [ = ] Titn, (1)
=1 =1

which follows from cocontinuity of jn x — (after all this is a left adjoint) and
from the explicit Similarily, jn x j{I) = j(n,{l)). Therefore, applying the Yoneda
Lemma, Segal’s special I'-condition amounts to saying that the maps

Cn, ) ————— €0, D))

are weak equivalences of simplicial sets for all n € A*? and for all () € I". In
particular, for I = 0 we have {0) := (x), and therefore we get a weak equivalence

Map(J,€) ~ * ——————— E(n,{*))

0

since [] j(1) := ¢, the initial simplicial presheaf. This forces all spaces & (n,{x))
i=1

to be contractible.

Theorem 7.88. There are model structures Cat?o”gdbb and Cat?o’;ple on the category
of simplicial presheaves Psha(A*4 x I') in which the fibrant objects are precisely
the symmetric monoidal d-fold complete Segal spaces and the symmetric monoidal

d-uple complete Segal spaces, respectively. Both these model structures are defined
by means of the corresponding left Bousfield localizations.

Proposition 7.89. Any symmetric monoidal (00, d)-category induces a symmetric
monoidal category, if we pass to the corresponding homotopy 1-category.

Proof Sketch. For simplicity let d = 1. Fix a symmetric monoidal co-category
@ e Cat(?oo 1) By definition, we know that the induced morphism

(2) = B(1) x €(1)

is a weak equivalence. By Whitehead’s Theorem 5.28, since €¢{2) and €{1) x
©(1) are bifibrant in Cat s 1), the weak equivalence (01,6}) = (€61, 6d2) has a
homotopy inverse m: €(1) x (1) — €(2), so we may define a tensor co-functor
as the composition

(1) x B(1) m ©(2)

® o
‘o)

From the twist isomorphism
t: (2) —<(2), 1,2~ 21
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we obtain an isomorphism #' = € (t): €(2) — €(2). This isomorphism induces a
map 7 given by the composition

(63,03)

G x €)Y — ™ (2 — (2 (1) x €1

We then realize that if we pass to homotopy categories, the map 7 precisely induces
the functor
H1€ x 1€ — 51€ x h: 6, (c,;d) = (¢0)
which follows from (4}, 85) o t' = (6},d}). In particular, we have
®o7 = (p'm)(61, 63)t'm
1,0

~ ptm

=®
and passing to the homotopy 1-category we obtain a natural isomorphism

R®oT=®

where 7: §16(1) x h1E(1) — h1E(1) and ®: h1;E{1) x h1 E{1) — h1E(1) denote
the induced functors on homotopy categories. Analogously, the associator of the
tensor product may be given by picking a homotopy inverse of the morphism

€3 > )

Write a: €(1)® — €(3) for such an homotopy inverse. We may then consider the
commutative diagram

! !

€3) . ©2) = (1)

(f!’g!) (5!176!2)
€{2) x €(1) — (1) x €(1)
@' Xi

mxid

(1)
where ¢: (3) — (2),1,2,3 — 1,2,2 and the morphisms f: (3) — (2) and g: (3) —
(1) are given by 1,2,3 — 1,2, % and 1,2,3 — %, x, 1, respectively.
b: (3 —(3),  1,2,3—23,1

Define

F=ao((8),085) xid): €(2) x (1) — €(3)
By construction

(f',g)F ~id

By making use of the above commutative diagram we obtain a homotopy equiva-
lence

(83,05) 0q' o F = (¢' xid) o (f',¢") o F ~ ¢' x id
Again by construction

(—®-)®—=¢ omo (¢ xid)o (m x id)
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and by what we have established before we obtain equivalences
(—®—-)®— =~ ¢ omo(d],05) 0¢ o Fo(mxid)

~ ¢'og o Fo(m xid)

= og oao((6,8) x id) o (m x id)

~ ('D! o q! oa
Analogously, one shows —® (—® —) ~ ¢' 0 ¢' 0o a and therefore we have established

(-®-)®-~-8(-8-)
Passing to the respective homotopy categories this yields the associator. We then
consider the unique morphism w: (xy — (1). From this we obtain a morphism
u' =€ (u): €(x) — €(1). Since, by assumption, the homotopy categeory b (€(x))
is the terminal category, the induced functor on homotopy categories simply picks
out an object 1 € h1 (€ (1)) In order to verify that this object behaves like a monoidal
unit, let ¢;: (1) — (2) be the unique morphism in Fin, which sends 1 to i € {1,2}.
This induces morphisms ¢} = €(1;): €{1) — €(2) and these may be identified
with
Vxe (2, 1), bz (1)

Finally, the equalities ¢ 011 = 1¢1y = 012 give rise to

plomo (81,8;) 0 1 = @'t = idgqry
where the LHS is either 1®— or —®1 depending on i € {1, 2}. Passing to homotopy
categories, we obtain natural isomorphisms
p: (5)®15id, M1 (-)Sid
in the respective homotopy categories. For more details see [39]. t

Ezample 7.90. Let € be a strict symmetric monoidal category (by Maclane’s coher-
ence Theorem this is not really a restriction, see the Nlab page coherence theorem
for monoidal categories). For #" := €* the maximal subgroupoid of €, the pair
(€, %) gives rise to a homotopical category which is saturated. Therefore, the
Rezk nerve

N*(€,7)
is a complete Segal space. We claim that, by means of the symmetric monoidal

structure on €, this may be extended to a symmetric monoidal (o, 1)-category. In
fact, we shall define a functor

@: I'°P — Psha(AX?)
which will constitute a symmetric monoidal (oo, 1)-category. To this end, we note
that 7™ = (€™)*. For an object (m) e I let
G(my =N (€™, W™ )ee
Next up, let us see what € shall do to the multiplication map ¢: (2) — (1),1,2 — 1.

Of course, this should induce a map €{2) — €(1). Let us start by considering
€ {2)pe: Its l-simplices are given by

NZ(C X C. W x W )oy = N(we((€ x BN, = WH x W), =~ NU; x NU;


https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
https://ncatlab.org/nlab/show/coherence+theorem+for+monoidal+categories
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Thus an [-simplex in €(2)y . is a pair of two [-tuples of composable isomorphisms

YA w w
Co £ Ch < R C

DO 5/4 Dl /4 /4 Dl
We may then use the symmetric monoidal structure on % to map this pair of
[-tuples to
Co®Dy =25 01D 2 ... =2, O, D,
More generally, an [-simplex in
B(2Dre = N(we(B x B)H),

is a pair of diagrams

Co,0 Cipo . Cr,0 Doy, D1
"Wal Wal le?/ ‘Wal Wal
Co,1 Ci1 . Cr Do Dy

] e vl
- e o m

Co, Ciy e Ch. Dy, Dy,

which shall be sent to the diagram

Coo®Dyyg —— Cro®D1g —— ... — Cro®Dip

v| vs| |or

Coi®Dyy — C11®D1y —— ... —— Ci1 ® Dy 1

v ”| o~
N »

Cou®Dp1 —— C1,®D1g —— ... —— C; ® Dy

More generally, a morphism (m) — {m') induces a map €(m) — €(m’) in the fol-
lowing way: By Lemma 7.85 it is enough to define this assignment for permutations
and order preserving functions. We can interpret the (oo, 1)-category €(m) as a
space of m-tuples of commutative grids, or commutative diagrams. Likewise, €{(m’)
is the space of m/-tuples of commutative grids. A permutation o: (m) — (m) in-
duces the map €{(m) — €{m) which takes an m-tuple of grids switches their
ordering according to ¢ and thus yields a permuted m-tuple of grids. For an order
preserving function f: {m) — (m’) we obtain a morphism €{m) — €{m’) which
takes an m-tuple of grids and maps it to the m/-tule of grids by looking at the
preimages f~'(j) for j € (m). In fact, all the information of f~!(x) is discarded,
and for any set f~1(j) = {i1,...,is} one takes the tensor product over all the grids
numbered by 4, (in the example above, we take the tensor product of the first grid
with the second one). All that is left to check is that Segal’s special I" condition is
satisfied. However, this follows from

%<m>k,. = ‘JIOO (%m, Wm)k).

Dy o

Jor

Dy 1

e
v

Dy
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we((&™)M)),
we(BH)™).

gl
(@ )

lle

N
N
N

lle

= (€ Dk,e)™
and from the definition of the maps €¢; (an m-tuple of grids is mapped to the i-th
grid). The above construction will be denoted by
NG @ € Psha(A x I

Definition 7.91. Let € and 2 be symmetric monoidal (oo, d)-categories.

o A symmetric monoidal co-functor (or symmetric monoidal (00, d)-functor)
is a natural transformation € — 9.

o A symmetric monoidal co-natural transformation is a homotopy h: € x
jA,l [1] — 9

Remark 7.92. Let €,9 € Cat%o 1 be fibrant, and let € S P be a symmetric
monoidal co-functor. Then ¢ determines morphisms on objects and 1-morphisms:

¢([0],<1)): €([0],<1)) — 2([0].<1)),  <([1],<1)): B([1].<1)) — 2([1],{1))
which we will also simply denote by ¢ for simplicity. We then observe that commu-
tativity of the diagram

@o(1) x Bo(1) £x¢ Do(1) x Do(1)
(goél X‘goéz 961 X@(SQ
. Bo(2) ——— s D) .
®e - L ®g
_ . . .

Go(l) —————— D1y

yields compatibility of ¢ with the tensor products in € and 9, respectively. In other
words, ((z) ®g ((y) ~ {(r ®¢ y). Analogously, one verifies the other properties
a symmetric monoidal functor has (up to homotopy), which establishes that the
induced functor h;€(1) — h; D(1) is a symmetric monoidal functor.

7.7. Smooth symmetric monoidal (o0, d)-categories. The next notion we want
to include is that of smooth co-categories. Very roughly speaking, a smooth (o0, d)-
category is an oo-sheaf of (o0, d)-categories. In other words, local information of
(o0, d)-categories may be glued to yield a global (o0, d)-category for all good covers.

Definition 7.93. The category of cartesian spaces, denoted Cart, has as objects sets
U for which there exists a natural number n € N such that U is an open subset of
R™ and U is (smoothly) diffeomorphic to R™. Morphisms in Cart are just smooth
maps.

We may yet again define a map jcart as the composition
Cart —= Psh(Cart) ————— Psha (Cart) —————— Psha(A*? x I' x Cart)

and again we just write j, if there is no danger of ambiguity. Moreover, we also
extend all the codomains of the maps jr, ja4,ja r and so on to Psha (AX? x I' x



161

Cart). The category Cart may be turned into a site by equipping it with the
coverage of good open covers, i.e., open covers for which every finite intersection
is either empty or diffeomorphic to R™ for some n. In this setting we recall the
definition of the Cech nerve:

Definition 7.94. For % = {U,};c.s a good open cover of V in Cart, the Cech nerve
C% € Psha(A*? x I' x Cart) has as its m-simplices the presheaf

Hch
¢:m

where ¢: m should mean that ¢ runs over all those (m + 1)-tuples ((o,...,(m) €
J™FL for which

m
U¢ = ﬂ Ug # &
i=0
We then define the inclusions
k . -
Lo U(Co ----- Cms1) U(co,...,g,c,.i.cmﬂ)
where the hat means omission. Now this yields the face maps for the Cech nerve

by means of the universal property of the coproduct:

]—[ jU(COwH;CnH»l) 7777777;777» I_[ jU(CO)"'7C7YL)
m+1: ¢ m: ¢

L[ jU(CO)“'?Cﬂ’L) 7777777 e ? L[ jUCO)“anH»l)
¢:m ¢:m+1
JU(hoennntt) TU(ChreeesGl oy GGl Cln)

by means of

JUC )

Remark 7.95. More efficiently,

(klea
CU = f s T UG,y
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where ja is the composition
A—F 5 sSet = Psha (%) - 5 Psha (A*4 x I' x Cart)

where 1: AX% x I x Cart — * is the canonical projection.

Definition 7.96. A smooth symmetric monoidal d-uple Segal space is an object
% € Psha(A*? x I' x Cart) such that

e ¥ is a fibrant object with respect to the injective model structure on
PShA(AXd X F)inj-

e % is local with respect to all the maps in Definition 7.86 (where we take
the tensor product of each of these maps with the identity on all the other
factors of the full product A*? x I" x Cart).

e % is local with respect to all the maps

. j(n,{0)) Xy ;
j(n, () x C L i

for all n e A*? and for all () e I'.

n,{)) x jV

Remark 7.97. The extra smoothness condition boils down to having weak equiva-
lences

RMap(j(n, (D), V), €) ~ €(n,{),V)s > RMap(j(n,{})) x C%,%)
However, since any simplicial presheaf may be written as a homotopy colimit (over
A°P) of its individual layers, we have

RMap(j(n,{)) x C%,€) ~ RMap(j(n,{l)) x hocolim C%,, %)

[nleaor

~ }E()]llmIR{Map( j(n, ) x C%,,€)

~ hohm 1_[ RMap(j(n,{l)) x jU:,€)
~ hohm <{g( (D, Ue)
neA
In particular, hgli(m € (n,(),Uc) is the homotopy limit of the diagram
neA,(:n
_
[&00.0) 7 [ $00 Vi) = 1] 00 Vi) ——f -
1€ 20,21€ 10711,126

Certainly enough, there also exists the notion of a d-fold smooth symmetric monoidal
Segal space and so on. In particular, we have:
Theorem T7.98. There exist model structures %OOCat(%Oug)le and ‘gooCat® glOb, which
both have the same underlying category Psha(AX¢ x I' x Cart), such that their
corresponding fibrant objects are smooth symmetric monoidal d-uple and d-fold Segal
spaces, respectively. These model categories are obtained by means of the respective
left Bousfield localizations.
Definition 7.99. Fix a presheaf €: Cart°® — Cat.

e The smooth Rezk nerve of € is given by

NE” (@) = [U — mfﬁ(fg(U))] € Psha (A x Cart)

e If the presheaf & is actually valued in (strict) symmetric monoidal cate-
gories, i.e., €: Cart® — Cat®, then the symmetric monoidal smooth Rezk
nerve of € is given by

NG (%) = [U - mgg((fg(U))] € Psha (A x I x Cart)
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where 9g denotes the symmetric monoidal Rezk nerve as given in Exam-
ple 7.90.

Remark 7.100. For more details on the above constructions, the reader should
consult the 2022 version of [6].

Remark 7.101. Note that the above definition suggests a good notion for what a
smooth 1-category could be. Indeed, such an object should be a functor € : Cart®® —
Cat such that 91" (%) satisfies the smoothness or descent condition with regards
to the site Cart.

Example 7.102. Consider a Lie group X. Any such Lie group gives rise to a model
for a smooth symmetric monoidal co-groupoid X, € Psha(I" x Cart) given by the
assignment

(D, U) — €*(U, %) € Set —> sSet
In the same style as in the previous chapter we may define the following notions:

Definition 7.103. Let € and & be smooth symmetric monoidal (oo, d)-categories.

e A smooth symmetric monoidal co-functor (or smooth symmetric monoidal
(00, d)-functor) is a natural transformation € — 9.

e A smooth symmetric monoidal co-natural transformation is a homotopy
h: € x jai[l] = 2.

7.8. Duals in (oo, d)-Categories. This chapter is based on [17] and [24].

We shall now try to construct the morphisms in Psha(A*¢ x I' x Cart) at which
we further localize in order to imprint the concept of duals into the very fabric of
the mathematical objects that we defined as smooth symmetric monoidal (o, d)-
categories. To this end, we realize that if % is a bicategory, then it is natural to
interpret 1-morphisms as functors and 2-morphisms as natural transformations. In
that setting, one can talk about adjunctions in 9 in the following sense:

Definition 7.104. Given two composable 1-morphisms x 4 y % z in a bicategory
A and a 2-morphism n: 1, — gOf, we call  the unit of an adjunction, if there
exists €: flg — 1, such that the triangle identities are satisfied:

fBg8f) (¢Of)Og

Lan \19 ~

fO1, =~ f=1,0f 1,09 =g

Example 7.105. Since a monoidal category € is the same as a bicategory B with
only one object, a symmetric monoidal category is the same as a bicategory with one
object, where composition of 1-morphisms is symmetric. We note that an object
c € € has a dual ¢! if and only if ¢ is right adjoint to ¢!, when both are viewed as
1l-morphisms in B%.

Ezxample 7.106. Let f: x — y be an invertible 1-morphism in a bicategory 9. Let
g denote its inverse, then we may choose isomorphisms

gaf = 1,, fOg =1,
which form the unit and counit for an adjunction between f and g. In particular,
g is a right adjoint to f, and f is a left adjoint to g. Conversely, any pair of

adjoints f — g such that the unit and counit maps 1, — gOf and fOg — 1, are
isomorphisms exhibit g as an inverse to f, up to isomorphism.

From the previous example we deduce:

g = g1,
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Corollary 7.107. Let 9B be a bicategory in which every 2-morphism is invertible,
and let f be a 1-morphism in $B. Then the following are equivalent:

e f is invertible.
o f admits a left adjoint.
e f admits a Tight adjoint.

We recall that any d-fold complete Segal space € gives rise to its associated
homotopy bicategory H26.

Definition 7.108. Let d > k > 2 and fix a smooth symmetric monoidal (oo, d)-
category € and a smooth symmetric monoidal (o0, k)-category 9.
e I is said to admit adjoints for 1-morphisms, if its homotopy bicategory
hoD admits adjoints for all 1-morphisms in the sense of Definition 7.104.
o We say that € has adjoints for k-morphisms, if for every fixed U € Cart
and for all m € AtlF=1} the (c0,d — k + 1)-category &(m, (1), U) has
adjoints for 1-morphisms.
o We say that € has duals for objects, if the symmetric monoidal 1-category
h1€ has duals for objects.

Remark 7.109. The previous definition may seem incomplete in that we do not
consider homotopy coherent adjunctions, however, any adjunction in the homotopy
2-category can be lifted to a homotopy coherent adjunction by [37].

Remark 7.110. By globularity, we realize that the condition that a smooth symmet-
ric monoidal (o0, d)-category € has adjoints for k-morphisms essentially boils down

to saying that the (oo, d—k)-category @ := € (1¢1,... x},<{1),U) (where ¢y xy: {1,...

A is the functor j — [1]) admits adjoints for all 1-morphisms in 9.

Remark 7.111. The condition that an (oo, d)-category € has adjoints depends on
d. We may always view & as an (00,d + 1)-category €%, in which all (d + 1)-
morphisms are invertible. Yet, €% will not have adjoints for d-morphisms unless
@ is an co-groupoid.

Corollary 7.112. Let € be a smooth symmetric monoidal (00, d)-category. If every
k-morphism in € is invertible, then € admits adjoints for k-morphisms.

Proof. Follows from Corollary 7.107. O

Remark 7.113. Let € be a symmetric monoidal (oo, d)-category. We say that an
object ¢ € € is invertible if there is another object ¢! € € such that the tensor
products c®c~ ! and ¢! ®c are both isomorphic to the unit object 1 € €. A Picard
o0-groupoid is a symmetric monoidal (00, 0)-category € such that every object of €
is invertible. By the previous corollary we see that a Picard co-groupoid has duals
when regarded as an (00, n)-category for any n > 0.

Claim 7.114 ([24]). Let € be a symmetric monoidal (oo, d)-category. Then there
exists another symmetric monoidal (00, d)-category € and a symmetric monoidal
functor +: € — & with the following properties:
e The symmetric monoidal (o0, d)-category €' has duals.
e For any symmetric monoidal (o0, d)-category & with duals and any sym-
metric monoidal functor (: @ — €, there exists a symmetric monoidal
functor £: @ — €' and an equivalence ¢ ~ 1£. Moreover, ¢ is uniquely

k} —
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determined up to equivalence:

%fd

v .

%%9

Remark 7.115. Pointing out some subtleties is in order:
e Let € be a symmetric monoidal (o0, d)-category, and assume we have two

pairs (%9, 1) and (%fd,f) which satisfy the properties of the above claim.
By the respective properties we obtain the existence of maps:

g

v

A

L
3 C

such that 75 ~ ¢ and ¢t ~ 7. Thus in particular,
W~  WEE=T
so by uniqueness up to isomorphism, we obtain 55 ~ id and Eg ~id. In
summary, € is uniquely determined up to equivalence.
e For a smooth symmetric monoidal (o0, d)-category, the claim does not
change. We consider the same diagrams
Cgfd

T

~

%%9

yet every (o0, d)-category involved is now also smooth.

e In the case where % is a symmetric monoidal (00, 1)-category we may iden-
tify € with the full subcategory of € spanned by the dualizable objects
in €. More generally, passing from a symmetric monoidal (oo, d)-category
to its fully dualizable counterpart € requires repeatedly discarding ob-
jects which do not admit duals and k-morphisms which do not admit left
and right adjoints.

Definition 7.116. Let € be a symmetric monoidal (00, d)-category. An object ¢ € €
is called fully dualizable if it belongs to the essential image of the functor +: € —
G.

The goal is now to encode having adjoints for k-morphisms and having duals for
objects into a new model category structure %wCat?o’L in which fibrant objects are

precisely smooth symmetric monoidal (o0, d)-categories with duals.

Remark 7.117. In particular, if we have such a model structure, then a trivial
fibration

PR AN
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in %OOCat%Td gives rise to the lifting problem

@ - %fd
=~

9 — 4
for any smooth symmetric monoidal (o0, d)-category with duals &. The existsence
of the corresponding lift is assured, since the LHS is a cofibration and the RHS is a
trivial fibration, by assumption. In particular, such a lift is unique up to homotopy.
The existence of this lift is precisely the content of Claim 7.114 (with the sole
difference that the diagram actually strictly commutes).

Definition 7.118. The bicategory Adj is the bicategory freely generated by
e two objects x and v,
e two morphisms f: x — y and g: y — =,
e two 2-morphisms 7: 1, — g0f and e: fOg — 1,
satisfying the triangle relations:
fO(g0f) (98f)0g

1sm ely nly l4e

fO01, =~ f=1,0f 1,09 ~g g = ¢g01,
We call Adj the free walking adjunction.

Remark 7.119. Any 2-functor Adj — %, for & a bicategory, uniquely determines
an adjunction in &.

We note that any bicategory & gives rise to a simplicially enriched category %Ba,
which has as objects the set %y and for z,y € 9By we have a simplicial mapping
object

Ba(z,y) = N(FB(x,y)) € sSet

which is just the standard nerve of the respective hom-category of . In fact, this
determines a functor

(—)a: Bicat — sSet-Cat

between the category of bicategories and the category of simplicially enriched cat-
egories. Taking this one step further, there is a canonical functor 9tA given by the
composition

sSet-Cat —— Cat®" ———— Psh(A*2) ———— Psha(A*2)

The arrow to the outermost right in the above composition is just interpreting a
bisimplicial set as a bisimplicial space by identifying it as a constant bisimplicial
space in the new simplicial direction. The morphism Cat®” — Psh(A*2) takes an
object in Cat®” to its levelwise nerve. F inally, the morphism sSet-Cat — Cat?
takes a simplicially enriched category € and views it as a simplicial object in Cat
as follows: A simplicially enriched category € gives rise to a functor €: A°P — Cat
which assigns to [n] € A the category ©,, which has the same objects as € and
morphisms from objects z to y are given by the set of n-simplices €(z,y),. In
other words, a simplicially enriched category is the same as a simplicial object
in Cat which is constant on objects. Summarizing all this, we get the following
definition:
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Definition 7.120. The double nerve is the functor
My : Bicat — Psha(A*?)
given by taking the composition

Bicat — 22 sSet-Cat — 22 Psha (A*2)

Having collected these notions, we can embed the walking adjunction into the
category of bisimplicial spaces:

Definition 7.121. Write sub(f),sub(g),sub(n), sub(e) = Adj for the sub-bicategories
generated by {f},{g},{f,9,n} and {f, g, e}, respectively. In particular, we let

o [ :=Mysub(f),
o g Masub(g),
. ﬁ = Nysub(n),
o £ = Iysub(e),
o ﬂ = m2AdJ

Definition 7.122. Let d > 2,1 < k < d—1,and m € All-F=1} Let py: Atkodd
A*? denote the projection onto the first two factors of Atk»d}  Consider the
functor

Jjm @ ph: Psha(A*?) — Psha(AX9)
which takes an object X € Psha(A*?) to the mutisimplicial space
UP§X7 Allk=1} o Alked) 5 (] k) ]_[ X, (k)0 € SSet
jm Hom(1,m)
Applying the functor jm © p3 to all the bisimplicial spaces f,g,7, yields multi-
simplicial spaces
fm’ gm7 nma Ema Adjm

For d, k and m as above, we realize that the inclusion 2-functor sub(f) — Adj
induces a morphism

Jm — Adjy,
In particular, if F® (%) is the free symmetric monoidal category with duals on a
single object *, then we may interpret F®(x) as a functor I'°® — Cat by
FO*) () = FO(»)'

Taking nerves levelwise we obtain a presheaf on A x I', which we may promote to
a simplicial presheaf on A x I". Pulling this back once again, we obtain a simplicial
presheaf on A*?x I", which we denote by Dualg. Consider the subobject T = Dualg
generated by the image of the object * inside Dualg. The inclusion * < F®(x)
induces a map

T — Dualg

Definition 7.123. The model category %”Cat?o’:& is given by the left Bousfield

localization of %”OOCat?O’%lOb at the morphisms

J(D; V) X fm J(D, V) x Adjy,

JCD, V) x 3({D), V) x Dualg

for all () € IV € Cart,m € AlL--F=1} A fibrant object in %wCat?Ofd will be
referred to as a smooth symmetric monoidal (o0, d)-category with duals.



168

Proposition 7.124. Let € be a fibrant object in %OOCatio,d. Then for all ({I),V) €
I' x Cart, the (00, d)-category € (1), V) admits duals for all k-morphisms with 1 <
k < d. In particular, for all V € Cart, the symmetric monoidal (00, d)-category
€ (V) admits duals for objects.

Proof Sketch. We shall only verify that € has duals for objects. The other part of
the proof may be found in [17] Proposition 2.3.13. First, since our model structure
is simplicial and the map { < Dualg is a trivial cofibration, the induced map on
simplcial mapping spaces Map(Dualg, €) — Map(f,€) is a trivial fibration. In
particular, this map is surjective on vertices. We then note that a map  — € just
picks an object © € €(1). On the other hand, a map Dualg — & picks out an
object ' together with unit and counit maps, which witness =" as the dual of 2 in
the respective homotopy categories. Hence, in total, the existence of a lift for the
diagram
& ——— Map(Dualg, €)
Nt

(_179’3]‘,77,6‘) -
(1) ————— Map(},%)
yields the claim. 0

7.9. Smooth oo-Functor Categories. Our goal in this chapter is to define a
suitable notion of smooth symmetric monoidal (00, d)-functor categories. From Ex-
ample 4.50 we recall that the category of simplicial presheaves on a small category
% is always powered, tensored, and enriched over sSet. With these ingredients,
the injective model structure Psha (€)in; is a simplicial model category. The key to
finding the correct functor co-categories is to find a good closed symmetric monoidal
structure on Psha (A*? x I' x Cart), and then hope that this will behave well with
the associated model structures, that is, we want that the corresponding internal
hom yields a right Quillen bifunctor.

Notation 7.125. We recall the following notation:
e Given X,Y € Psha (%), for of a symmetric monoidal category, we denote
the simplicial enrichment by
Map(X,Y) € sSet

e In the special case where of = AX¢ x I" x Cart, we endow Psha (A*94 x I" x
Cart) with the symmetric monoidal structure induced by Day convolution,
analogously to how we did it in Example 4.56. For X,Y € Psha (AX9x " x
Cart) we will denote the corresponding Day convolution tensor product
by

X ®Y e Psha(A*? x I' x Cart)
The Day internal hom will be denoted by
Fun®(X,Y) € Psha (AX? x ' x Cart)
We note that this internal hom also has a neat formula:
Fun®(X,Y) = Hom(X ® X,Y)
where J: (AX9 x I' x Cart)°P x A°? — Set is the Yoneda embedding and

Hom(—, —) denotes the set-valued hom-functor of the category Psha (A*?x
I' x Cart).
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According to [16] the multiple injective model structure %OOCat%Oug)le is a sym-
metric monoidal model category (where the tensor product is Day convolution),
which allows for an easy way to define the appropriate homotopical internal hom
in the uple case of smooth symmetric monoidal (o0, d)-categories:

Definition 7.126. Let d > 0 and fix arbitrary objects X,Y € %OOCat® ug)le The
homotopical internal hom in ‘gooCat%)ug)le from X to Y, is the derived 1nternal hom:

Fun, (X, Y) = Fun®(X, Rypie(Y)) € €7 Cat,'h¢

(00,d)

where Ryple denotes a fibrant replacement functor in %OOCat%)us)le.

uple

Unfortunately, the globular injective model structure C@”Ca‘c%8 glo)b does not sat-
isfy the pushout product axiom, so we cannot compute homotopical internal homs
by computing the corresponding derived internal hom (the globularity condition it-
self is at fault here). The solution to the problem is to transfer the derived internal
hom of some other Quillen equivalent model category to our setting. For this, we
first have to introduce Rezk’s ©4-spaces, which form a cartesian model category:

7.9.1. Rezk’s ©g4-spaces. The following short exposition is based on [32] and the
most recent version of [16].

A Og4-space is a simplicial presheaf on Joyal’s category ©4, that is, an object in
Psha(©4). The categories O4 for d € N will be explained first: We regard ©, as a
full subcategory of St-d-Cat of strict d-categories (recall that a strict d-category is
a category enriched over the category of strict (d — 1)-categories, see also Example
4.23). The category ©g is the full subcategory of St-0-Cat = Set consisting of the
terminal object. The category ©; is the full subcategory of St-1-Cat consisting of
the objects [n] for n € N, where [n] represents the free strict 1-category on the
diagram
0 1 e n—1 n

In particular, ©; = A, the standard simplex category. The category O, is the full
subcategory of St-2-Cat consisting of objects which are denoted [m]([n1], ..., [7m])
for m,nqy,...,n, € N. This represents the strict 2-category C which is "freely
generated” by the objects {0,1,...,m}, and morphism categories C(i —1,i) = [n];.
For example, the strict 2-category [4]([5],[1],[3],[0]) corresponds to the free 2-
category:

P ARN v
0@1/3\2@3—4

More generally, the objects of ©4 are of the form [m](¢4,...,9y,), where m € N
and 9, are objects in ©4_1. This object then corresponds to the strict d-category C
freely generated by objects {0, ..., m}, and a strict (d — 1)-category of morphisms
C(i — 1,i) = ¢¥;. Morphisms of O4 are just functors between strict d-categories
(enriched functors between St-(d — 1)-Cat-enriched categories.). Just like A*? the
category O4 may be used to define the correct notion of globular (oo, d)-categories.
In fact, one considers the injective model structure Psha (©4)in; and then one per-
forms left Bousfield localization with respect to a class of morphisms which encodes
some form of Segal conditions as well as completeness conditions (for details see
[32]). The resulting model category will be denoted by Psha (04)1oc and it is called
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the Rezk model structure on ©4-spaces. We then observe that there is a functor
f: A*4 - ©4 given by the composition

Axd Ty Ax@-1 g 2 Ax@-2) g, Sy T Ay, T,
where
A(d—i+1) % 91’71 fi Ax(d—z‘) % 9@’
([mal, ... [ma—ig1],9) ([mal, ..., [ma—i], [ma—iz1](9,...,0))

For more details on this see [5]. Taking left and right Kan extensions along f, yields
an adjunction
f#
—
1
e PShA(@d)
i

e ¢
fx

The adjunction f* - f. is then found to be a Quillen equivalence between the

globular model structure on d-fold Segal spaces (that is, Cat%igbd)) and the Rezk

Psha (A%4)

model structure on Og4-spaces (see [5] Corollary 7.3). From that point of view,
fibrant objects in Psha (©4)10c describe the notion of globular (o0, d)-categories just
as well as d-fold complete Segal spaces do. The advantage of the Rezk model
structure is however that it is a cartesian closed model structure, i.e., we have a
homotopical internal hom. The idea is to transfer this homtotopical internal hom
from O 4-spaces to d-fold Segal spaces by means of the Quillen equivalence f* - f..
We then note that we may extend the functor f to a functor f: A*? % I x Cart —
04 x I' x Cart by setting f = f xidp x idcart. In particular, denote by f# and f*
the corresponding left and right Kan extensions along fw In the newest version of
[16], we find the following result:

Proposition 7.127. Let d > 0 and denote by Fung(—, —) the internal hom in
Psha (04 x I' x Cart) with respect to the cartesian closed structure. Furthermore, let
Riy;: Psha(AX9x I" x Cart)inj — Psha (AX9x I" x Cart)inj be a fibrant replacement
functor for the injective model structure. We may then consider the bifunctor

Psha (A*? x I' x Cart) x Psha(A*? x I" x Cart) — Psha(A*? x I" x Cart)
(Y. Z) = Ruyf*Fun(£.Y, [ 2)
Then for all X,Y,Z € Psha(A*4 x I x Cart) with Z fibrant in the globular model
structure and X, Y fibrant in the injective model strcture, the object Rinjf*Fun%(f*Y, fx2)

is also fibrant in %OOCat%)gzo)b and, moreover, we have a weak equivalence of derived
mapping spaces

Map(X ® Y, Z) = Map(X, Ry ["Fung(£.Y, 1. 2))
Proof. This will be Proposition 2.4.3 in the updated version of [16]. O
This motivates:

Definition 7.128. Let d > 0. For X,Y ¢ %OOCat(®O’Ogil°)b, the corresponding homo-
topical internal Hom is given by
Fung®”(X,Y) = Rini f*Fund(f. Reiob X, fxRgtobY)

where Rinj, Rglon are fibrant replacement functors for the injective and globular
model structures, respectively.
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Remark 7.129. We note that Fung 1°b is not the left or right derived functor of Fun®,
but the above proposition assures us that this is yet still the correct notion to go
with.

7.10. Cores and Mapping objects of smooth (oo, d)-Categories. Recall the
following:

Notation 7.130. Let R := L x R/L be a product of two categories, and let X €
Psha(R). For I € L, we are able to perform partial evaluation of X at [ to obtain
a simplicial presheaf X! € Psha (R/L).

Definition 7.131. Let M, L/M, R/L be symmetric monoidal categories and consider
the induced symmetric monoidal categories L :== M x L/M, R := L x R/L and
R/M := L/MxR/L. Endow both Psha (L) and Psha (R) with the Day convolution
closed monoidal structure (analogously to Example 4.56).
e The powering of Y € Psha(R) by X € Psha (L) is given by
Map(X,Y) == [p* X, Y |pay
where p: L x R/L — L is the canonical projection functor and [—, —|pay
is the Day convolution internal hom (see Proposition 4.53).
e For Y € Psha(R) and X € Psha(L), the corresponding mapping object
from X toY is given by

Mapp(X,Y) f Map(Xm,Ym) € Psha(R/M)
meM
Remark 7.132. Let us point out some subtleties:

e The above definition will be of particular interest to us whenever R (and
therefore also L) is a subfactor of A*? x I' x Cart. If Psha(R) is en-
dowed with the multiple injective model structure obtained by localizing
the factors present in R (analogously to how we did it for %OCCat®OOu§;e)
denoted Psha (R)muit-inj, then the functor p* is a left Quillen functor. In

particular, the powering
Map(—, —): Psha(L),3
is a right Quillen bifunctor.

o If L = R, then Map(X,Y) = [X,Y]pay is the Day internal Hom from X

to Y.
e For M = %, we have

Mappg (X, Y) = Map(X,Y)
Indeed, any wedge

X PShA (R)mult—inj - PShA (R)mult—inj

mult-inj

(Z,¢)

for the functor +°P x * — Psha(R), (*, %) — Map(X,Y) is trivial in the
sense that the wedge condition reads

Map(X,Y)
/
\

Map(X,Y)

Map(X,Y)

\/



172

which gives no more information than saying that ¢ is a morphism from
Z to Map(X,Y) in Psha(R). The universal such morphism, and thus the
sought-for end, is then simply given by the identity wedge
(Map(X,¥),  id: Map(X,V)->Map(X,Y))
e For M =L = R, we have
mupM(Xa Y) = Map(Xv Y)
Indeed, we recall the adjunction
Hom (S ©® X,Y) = sSet(S, Map(X,Y))
for all S € sSet and X,Y € Psha(R). Thus, we only need to verify that
Mapp (X,Y) gives rise to the same adjunction data:
sSet (A", f 9ﬁap(Xm,Ym)) ~ J sSet (A", Map(Xm,Ym))
meM meM
f sSet(A™ © Xm,Ym)
meM
f J Set(A7 © (Xm)y, (Ym),)

meM leA
~ Hom(A" © X,Y)

Since any simplicial set A € sSet is a colimit of representables, the above
adjunction already yields the full adjunction.

7.10.1. Cores. Recall that for a subset S < {1,...,d} we wrote S¢ := {1,...,d}\S
for its corresponding complement.

12

e

Definition 7.133. For S < {1,...,d} and m € A® a multisimplex, the functor

Psha (A%9) D Psha (A5

which takes a simplicial presheaf X on A*¢ to the partial evaluation Xm at m.
The functor evy, is called the partial evaluation functor for the multisimplex m.

Recall the Nerve Realization paradigm 2.28. We then note that the partial
evaluation functor ev,, arises as a corresponding nerve functor. Indeed, let us
consider the functor

(——m): A% x A - A x A
which takes a multisimplex (a, [[]) € A" x A and maps it onto the multisimplex
(a,[l],m) € A¥? x A = Alld} x AL} which is given by (a, [[],m)'|s = m and
(a,[l], m)’|sc = a and (a, [I], m)’|;7, = [I]. We then consider the functor (—, —, m)
given by the composition

X

A*d x A Psha (A*?)

X

B ‘(777,111)

A5 x A
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Lemma 7.134. The functor evy, from the previous definition admits a left adjoint
Lm
Psha (A%") L Psha (AX9)

e0m

which is given as the left Kan extension of (—, — m): AS" x A — Psha (A*?) along
the Yoneda embedding:

AS X A mm) Psha (AX9)
J
BS L .
Lm
Psha (AS)

More explicitly, £ takes Y € Psha(AS") and maps it onto
mOY: A% - sSet, A% 5n u Ynge

AS(ng,m)

where ng € AS denotes the multisimplex obtained by throwing away all simplices
that are not indexed by an element of S and analogously for nge..

Proof. Let us start by showing that the explicit formula jm®(—) for £,, yields a left
adjoint for ev,y,. If Y is representable, that is, Y =~ X (k, [1]) for (k,[I]) € A*? x A,
then

Hom(£,Y, X) = X(k,m); =~ Hom(Y, X (m))
which already establishes the adjunction £, - evy,. That £y, is the corresponding

left Kan extension immediately follows from the fact that for X € Psha(A*9) we
have

N——mX = Hom((—, —,m), X) = X(m) = ev,n(X)
and hence we are in the typical nerve-realization paradigm 2.28. (]

We note that in particular if m = 0 € A® is the O-multisimplex, then £¢ is given
by viewing a simplicial presheaf Y € Psha(AS") as a simplicial presheaf on A*?
by letting it be constant on all those factors in A®. Hence any S < {1,...,d} gives
rise to an adjunction

£s
Psha (A*9 x ' x Cart) L Psha (A5 x I' x Cart)

evgs

where evg denotes partial evaluation at 0 € A®. We then have the following:

Lemma 7.135 ([17] Lemma 2.2.8). The adjunction £s - evg from above descends
to a Quillen adjunction at the level of the local injective model structures.

The preceding Lemma justifies the following definition:
Definition 7.136. The functor
(=)

Psha(A*4 x I' x Cart) Psha (I" x Cart)
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is given as the right derived functor of the evaluation at O-functor ev; . 4. More
concisely, (—)* = Revyy gy
®,glob  ¢Y{1,...,

‘ngat(w7d) —

-
-

77 loc(ygRev(1, . qy)=Revg . ay

-
-

v

®;glob

Ho(&“Cat;*))")

Remark 7.137. Let € be a smooth symmetric monoidal (oo, d)-category, i.e., a fi-
brant object in %wCat%flgb. Then the smooth symmetric monoidal co-groupoid
@ is called the underlying smooth symmetric monoidal co-groupoid of €. In par-
ticular, since € is fibrant and by using Ken Brown’s Lemma 5.17, we deduce that
6" ~ 20{1

.....
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8. SMOOTH BORDISM CATEGORIES

Do not meddle in the affairs of
wizards, for they are subtle and
quick to anger.

J.R.R. Tolkien, The Fellowship of
the Ring

The following Chapter is based on the corresponding construction of Bordism
categories in [16].

In mathematics, the concept of bordism plays a crucial role in the study of manifolds
and their embeddings. In recent years, the theory of bordisms has been extended
to the setting of co-categories, giving rise to the theory of bordism oco-categories.
In this chapter, we will focus on a particular class of bordism co-categories, known
as smooth oo-bordism categories. Here, the term "smooth" refers to the smooth-
ness of the oo-categories involved, which are oo-sheaves of co-categories. We will
begin by introducing the general notion of a geometric structure, which will serve
as a foundational concept for our study of smooth co-bordism categories as it will
enable us to consider an onslaught of different flavors of bordism categories. We
will then carry on with the construction of two variants of smooth co-bordism cat-
egories endowed with general geometric structures, as well as consider some low
dimensional examples. Finally, we will study the behaviour and general properties
of the mentioned bordim categories, as well as investigate their symmetric monoidal
structure.

8.1. Geometric Structures.

Definition 8.1. Let FEmb, be the category which has as objects submersions
p: M — U with d-dimensional fibers (this means that p~'{u} is a d-dimensional
manifold for all w € U) and U an object in Cart. Morphisms are smooth bundle
maps

(ft M> N, F:U—->YV)
that restrict to embeddings fiberwise, i.e., we have a commuting square

M— N

U——F—V

and the restriction f, : My — Np(y,), where M, == p~{u} and Np(,) = ¢~ {F(u)},
is an open embedding. Moreover, this category may be looked at as a site by defining
covering families to be those collections of morphisms

M, — " oM

Ui<j+>U

such that the maps i;,j; are open embeddings and the collection {¢;(M;)}ier is an
open cover of M.
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Ezample 8.2. Consider the category Emb, which has as objects smooth d-dimensional
manifolds and morphisms are smooth embeddings. We have an embedding (a fully
faithful functor)

Embd FEmbd

M M—— N

N RO — RV
which sends an object M to the canonical projection M — R?, while an embedding

is mapped to the bundle map (f,idgo).

Definition 8.3. A fiberwise d-dimensional geometric structure is a simplicial presheaf
on FEmb,.

Remark 8.4. A d-dimensional topological structure is an object in Psha (Emby).

Remark 8.5. There is a simplicial enrichment of the site FEmbg: The simplicially
enriched site §Emb, has the same objects as FEmb,. Given two objects M — U
and N — V, the corresponding Hom-object
F¢mby(M — U,N - V)
is the simplicial set whose n-simplices are pairs of smooth maps
(g: " x M > N, u:U - V)

where §" = {t € R"** | 3. ¢; = 1}, such that for any ¢ € 6" the resulting map
gt = g(t,—): M — N along with the map u: U — V form a morphism in FEmb,:

M—% N

U—o Vv
In particular, a morphism f: [n] — [»/] in A is mapped to the map
o Femby(M - U,N - V), — F€mby(M — U,N - V),

Xid]\/[

(g: 6" x M — N, u: U — V) > (6" x M DS 60" s 0 90 Nz U - V)
Covering families for the enriched site FEmb, are the same as for Femby.

Definition 8.6. A fiberwise d-dimensional geometric structure with isotopies is a
simplicial presheaf on the enriched site F€mb,, that is, an sSet-enriched functor
FEmb” — sSet.

Remark 8.7. There are two reasons for calling an object in the sSet-enriched functor
category Psha (FEmb,) a geometric structure with isotopies. The main reason is
that later we will see how any such object will induce a different variant of a smooth
bordism (o0, d)-category which incorporates (higher) isotopies as higher morphisms.
Another reason is that any such enriched functor S yields morphisms of simplicial
sets

Femby(M — U,N — V) — Map(S(N — V),S(M — U))
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Recall that an [-simplex in the source is a pair (g: ' x M — N,u: U — V). Here
g is essentially a &'-family of embeddings, that is, an isotopy. Our functor S then
takes (g, u) to a (higher) homotopy A! x S(N — V) — S(M — U).

We will motivate how the above definition really incorporates a notion of geo-
metric structure by considering examples:

Ezxample 8.8. The trivial geometric structure is given by the terminal simplicial
presheaf S = «.

Example 8.9. Let X be a smooth manifold. Then X may be interpreted as a geo-
metric structure via the sheaf which assigns

(M - U) —»€*(M,X)
to all submersions M — U. A morphism

M—r N

U——F—V
is mapped to the precomposition map
[ €P(N,X) > €F(M,X)

Ezxample 8.10. Recall that a framing for a d-manifold M is a trivialization of the
tangent bundle of M. More concretely, consider the trivial vector bundle R? =
M x R? over M, then a framing is the data of an isomorphism T'M = R%:

™ ————— 5 R?

N

More generally, if d < d’, then a d’'-framing of a d-manifold M is a trivialization of
the stabilized tangent bundle TM @ R? ~¢, that is, an isomorphism

M @Rd/—d N Bd’

N4

M

In order to encode the notion of a d-framing we consider the canonical projection
map (R? x R® — R®) € FEmby,, apply the Yoneda embedding and view it as a
simplicial presheaf on FEmb,. Denote the resulting object by j(R? x R? — R?) e
Psha (FEmbg). We then note that any d-dimensional manifold may be viewed as
an object in FEmb, by looking at the canonical submersion with d-dimensional
fibers M — RC. Evaluating the presheaf j(R? — R°) at the manifold M — RO
results in the set

FEmby(M — R% R? — R?)
which is precisely given by the set of embeddings M — R¢. Taking the tangent map
of any such embedding f: M — R? results in linear isomorphisms T, f: T, M —
T,R? >~ R? and therefore these collect into a bundle isomorphism 7'M q Rd,
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which is precisely the notion of a framing. For a d'-framing, with d < d’, we take
M := M x R¥~4 and then consider the presheaf j (Rd/ — RY). Elements in the set
FEmbd(M — RO, R? — R?) then give rise to d’-framings for M.

Example 8.11. More generally, if M is a d-dimensional manifold and U is a cartesian
space, then we may consider the canonical submersion with d-dimensional fibers
given by the projection map M x U — U. Evaluating the representable simplicial
presheaf j(R? x U — U) at M x U —» U then corresponds to the set of fiberwise

embeddings

MxU—71 L Rixp

U——U
Hence for each u € U, we get an embedding f,,: M — R? and hence for each u we
get a d-framing of M.
Example 8.12. Consider the presheaf

Riem/ : FEmb%” — Set

of fiberwise Riemannian metrics. This presheaf sends an object M L U to the set
of metrics on the fiberwise tangent bundle

TN = [ [ 767 u)

uelU
where T'(p~!{u}) denotes the usual tangent bundle of the d-dimensional manifold
p~'{u}. This means that an element in the set Riem/,(p) is a U-family
{mu}ueU

of metrics m* on T'(p~1{u}). A morphism

M—r N

P lq
U——F—V
in FEmby is sent to the function
(f,F)*: Riem,(N 5 V) > Riem/,(M 5 U)
which takes a V-family of metrics m := {m"},cy on the fiberwise tangent bundle
THDN to the U-family of pullback metrics

(f, F)m = {f*m"},cp
where each member of this U-family is given by the formula
(Frm" ), (v, w) == mi () (T f (v), T, f(w)

for all z € p~*{u} and all v,w € T,(p~{u}), where m?((;) denotes the symmetric

bilinear form of the metric m¥(*) at the point f(z) € N. This is a well defined
metric on the fiberwise tangent bundle T7(®) M, since f is a fiberwise embedding.
Analogously, one may define the presheaves

Lorentz),: FEmb3® — Set, URiem/,: FEmb” — Set
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of fiberwise Lorentzian manifolds and more generally fiberwise Pseudo-Riemannian
metrics.

Example 8.13. Let G be a Lie group. The notion of a G-structure with connection
may be encoded as a simplicial presheaf BG o, on FEmb,; by considering the
oo-sheafification (a fibrant replacement) of the simplicial presheaf

(M = U) — N (M 9))//€*(M,G))

in Psha (FEmbg)g,,- Here Qf (M; g) denotes the set of fiberwise Lie-algebra valued
1-forms, €*(M,G) denotes the group of smooth functions M — G and 9 is the
usual nerve functor which is applied to the action groupoid

Qp(M;9)//€* (M, G) € Cat
which has
e objects given by the set of fiberwise smooth g-valued 1-forms A € QF,(M; g),

e morphisms g: A — A’ are labeled by smooth functions g € € (U, G) such
that they relate source and target by a gauge transformation

A =g Ag+ g dg

where g~! Ag denotes the pointwise adjoint action of G' on g and g~'dg is
the pullback g* () of the Maurer-Cartan form 9 € Q'(G;g) (see the Nlab
Maurer-Cartan form).

e Composition is induced by the group multiplication of G, i.e., composi-
tion of morphisms g: A — A’ and h: A’ — A” is given by the pointwise
mutiplication h-g: A — A”.

For more details see [16] Example 3.3 and [13].

Ezample 8.14. We may encode tangential structures (see the Nlab tangential struc-
ture) in general as simplicial presheaves on FEmb,. The corresponding construction
may be found in [16] 3.2.

Ezample 8.15. Consider the enriched Yoneda embedding & : FEmb,; — Psha (FEmby).
Then any object (M — U) € FEmb, induces a d-dimensional geometric structure
with isotopies & (M — U).

A good question to ask now is whether or not we can relate the categories
Psha (FEmbg) and Psha (F€mby) in some way. In particular, since FEmb, and
FEmb, are sites, we may consider the model categories Psha(FEmbg)g,, and
Psha (§€mb,) ¢, obtained by taking left Bousfield localizations of the correspond-
ing injective model structures at the Cech nerves (see Definition 6.40) and ask
whether there is a model categorical correspondence between these. To construct
such a thing, consider the enriched functor

FEmby ——— F¢mby,

M—-U)—— (M —>U)

(where Set is interpreted as an sSet-enriched category with Hom-objects being
given by interpreting the usual Hom-sets as simplicial sets) which is the identity on
objects, while we have a map of simplicial sets

FEmby(M — U,N — V) — F€mby(M — U,N — V)


https://ncatlab.org/nlab/show/Maurer-Cartan+form
https://ncatlab.org/nlab/show/tangential+structure
https://ncatlab.org/nlab/show/tangential+structure
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M—'

An [-simplex on the LHS, which is just a bundle map
is mapped to the ¢'-family
g(t

N
U——FF—V
=

M2 N
U——F—V
where g: 6/ x M — N is given by g(t,—) := f for all t € §'. Taking the left Kan

extension along p, denoted p; yields an enriched adjunction

P!

PShA (FEmbd) L PShA (S@mbd)

p

where p* denotes precomposition with p (see Proposition 4.46). Explicitly, the
simplicially enriched left adjoint functor py sends a representable presheaf j(M —»
U) to the representable simplicially enriched presheaf J (M — U). We then have
the following:

Proposition 8.16. The adjunction

P!
Psha (FEmbg) oo, I Psha (§€mbg) ¢
P*

is a Quillen adjunction.
Proof. This is Proposition 3.4.11 in the updated version of [16]. O

Remark 8.17. All aforementioned geometric structures may be considered as geo-
metric structures with isotopies by applying pi.

Example 8.18. There is a more direct construction to have a geometric structure of,
say, Riemannian metrics with isotopies. Indeed, we define the simplicially enriched
presheaf

Riem),: FEmbS® — sSet

An object (M 5 U) € FEmby is sent to the simplicial set D‘iiemz(p) which has as
its set of [-simplices ¢'-families of fiberwise Riemannian metrics, that is, elements
of the set

HRlemd ~ Set (4!, Rlemd( ))

ted!

where §' := {z € RI*! | 3. ; = 1}. In particular, the respective face and degen-
eracy maps dy, s;, are induced by precomposition with the maps |d¥|,|s*| defined
analogously as in equation (1):

|d*|

51 5t Riemz(p)

Sk‘,
gl s Riem), (p)
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The action on the simplicial set of morphisms
Femby(M = U, N 5 V) —> Map(Riem/,(¢), Riem/,(p))
has components

Femby(M 5 U, N 5 V), —> Map(Riem),(q), Riem,(p)),

which in turn send an element (f;, F)est € FEmby(M 5 U N 5 V)i to the
morphism A! x %iemg(q) — %iem;(p) which, on n-simplices, is given by

Al x iem)(q)n 3 (h, o' " Riem)(a) ———— (Ui, F)'mi) € Riem](p),

Analogously, we can define the simplicially enriched presheaves
Lotents): FEmbY — Set,  URiem),: FEmbS® — Set

of fiberwise Lorentzian manifolds with isotopies and more generally fiberwise Pseudo-
Riemannian metrics with isotopies.

Example 8.19. We may also enrich Example 8.9. For a smooth manifold X denote
by €¥(—,X) the simplicially enriched geometric structure FEmb;” — sSet which
takes a submersion M — U to the simplicial set

P (M, %)
for which l-simplices are smooth ¢'-families of smooth maps M — X, that is, a

smooth map &' x M — X. Face and degeneracy maps are given analogously to Cut.
The action of this simplicially enriched functor on morphisms

Femby(M > U,N - V) Map(€* (N, X), €2 (M, X))

maps an [-simplex (f;, F')es, on the LHS to an [-simplex Al x€* (N, X) — €% (M, X),
which in turn has components

Al x €°(N, %), ¢ (M, X),

(ha (at)teér) f (f|2|(t)at)tezv

Remark 8.20. We do not necessarily need to use the model category of simpli-
cial sets sSetquillen as the codomain of our given geometric structures. In fact,
a Quillen equivalent codomain would do just as nicely. One such choice is given
by the transferred model structure on smooth sets. Indeed, consider the category
of presheaves on Set® " This category of presheaves admits a model structure
which is transferred from the Quillen model structure on sSet by means of the right
adjoint

Sing,,

SetCart™” sSet

X F(6°) = Set“™t™ (X 0 6°,5)

referred to as the smooth singular complex functor. Here the functor §°*: A — Cart
is the map [n] — ¢™ (which does the obvious thing to morphisms), while & denotes
the Yoneda embedding Cart — SetC® ™ The resulting model category, called the
model category of smooth sets, is denoted by € Set = Setgzzt:fp. Weak equivalences
and fibrations in ¥ Set are those morphisms whose image under Sing,, are weak

equivalences and fibrations in the Quillen model structure on simplicial sets. This
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model structure exists and it is cartesian. Moreover, by Theorem 2.28 Sing,, has a
left adjoint |— |, and the corresponding adjunction is actually a Quillen equivalence
|—loo
E*Set Quillen | SsetQuillen
Sing,

(this is Theorem 7.8 in [29]). Having all that, we may redefine the site FEmb, as
something which is not enriched in simplicial sets, but rather enriched in smooth

sets. The objects in F€mb, are the same as before. For objects M L Uand N % vV,
the corresponding Hom-smooth set is the smooth set which takes a cartesian space
L € Cart to the set of pairs of smooth maps (f: Lx M — N, F: U — V) such that
the resulting maps (f(¢,—), F)) form morphisms in the usual category FEmb, for
allt € L. A d-dimensional geometric structure with isotopies may then equivalently
be defined as €*Set-enriched presheaves FEmb® — F*Set. This definition will
be employed in the newer versions of the papers [16, 17] as it is more convenient
with regards to the given proofs in the papers.

We will now define very convenient subcategories of FEmb, and F€mb,, respec-
tively.

Definition 8.21. Let d > 0.

e The site FEmbCarty is the full subcategory of FEmb, for which each
object is isomorphic to some projection map R? x U — U, with the
Grothendieck topology of good open covers (meaning open covers on total
spaces such that any finite intersection is empty or isomorphic to an object
of FEmbCartg).

e The simplicially enriched site FE&mbCarty is the full enriched subcategory
of FEmb, for which each objects is isomorphic to some projection R? x U
with the Grothendieck topology of good open covers.

e The model categories Psha (FEmbCartg) sy, and Psha (FEmbCartq) s,
are given as the respective left bousfield localizations of the injective model
structrues at Cech covers.

We then have the following:

Proposition 8.22. Denote by q: FEmbCarty; — FEmb, and q: FEmbCarty — §Emby
the canonical inclusion functors. Then the induced restriction functors

q": Psha(FEmbg) .., — Psha(FEmbCartg) g,
q: PShA(S’@mbd)cech — PShA(SmeCartd)cech
are right Quillen equivalences.

Proof. This is Proposition 3.3.2 in [16]. O

Remark 8.23. The previous proposition tells us that it is just as fine to define
geometric structrues as simplicial presheaves on FEmbCart; and F¢mbCart,, re-
spectively.

8.2. The Smooth d-uple Bordism Category. We start off this chapter by ex-
plaining the notion of a cut for a submersion p: M — U. This will be generalized
to cut [m]-tuples and cut m-grids, for m € A*¢. A cut m-grid for a d-dimensional
manifold is precisely what one would expect: a grid of cuts of the given manifold
which partitions the manifold into several pieces and in that sense makes the core of
the cut-grid into a manifold with corners. This will then lead to a quite comfortable
definition of bordism co-categories.
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Definition 8.24. A cut of an object M L Uin FEmby is a triple (C,C-,Cs) of
subsets of M such that there is a smooth map h: M — R satisfying

h~ Y (—w,0) = C_, r=H0} = O, h=1(0,0) = C=
Moreover, we demand that the fiberwise-reqular values of the map (h,p): M —

R x U form an open neighborhood of {0} x U in R x U. By fiberwise-regular values

of (h,p) we mean the regular values of the maps (h,p)|,-1{,y for all u e U.
Ezample 8.25. A cut for the projection M — R? onto the 0-dimensional manifold
RY (a singleton) may look like

where M is the genus 3-surface as depicted. The red dashed line depicts the cut
C_. For C. and C_. there is a choice to make depending on the function which
induces the cut triple. C< could either be the half of the surface with two holes,
or the half with only one hole and vice versa for C-. If, on the other hand, M is a
1-dimensional manifold and U := (0,1) = R in Cart, then a cut for the projection
M x U — U might look something like

/\/'\

M

So we get an (0,1)-indexed family of cuts (points) for the manifold M and this
family of cuts varies smoothly. The condition that the fiberwise regular values form
an open neighborhood of {0} x U asserts that the given cut C_ is a 1-dimensional
submanifold of M.

Notation 8.26. For a cut triple as above we shall use the notation
Cg:=C.uC, Cs=C-uC=
This induces a partial order on the set of cuts with C' < C” if and only if C¢ < C”g‘

Remark 8.27. The definition of a cut gives rise to a presheaf on FEmb,; in the
following way: There is a functor Cut: FEmb}” — Set that maps an object M Su
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to its set of cuts, and a morphism

%N
lq
|4

Cut(f, F): Cut(q) — Cut(p)

S =

_
F

is mapped to the map

which takes a cut for N - V and maps it onto the triple
(f710<7 (filcza .f710>)
This is well defined (that is, it defines a cut for M 5 U). Indeed, if h: N - R

witnesses (C<,C—,C>) as a cut for N 5 V', then we may consider ho f: M — R.
Certainly,

(hof)_l(_wvo) :f_lc<’ (hof)_l{()} :f_lc=7 (hof)_1(0700) :f_lc>
Since f is a fiberwise embedding, we again have that the fiberwise regular values

of ho f form an open neighborhood of {0} x U c R x U.

Definition 8.28. Let d > 0 and [m] € A. A cut [m]-tuple C for (M 5 U) € FEmby,
is a collection of cuts

C;=(C<j,C=j,C55)

for M % U indexed by the vertices j € [m] such that
Co<Cr1<...<0y

Ezample 8.29. For d = 2, M a 4-genus surface and [m] = [2], a cut [m]-tuple for
M x RY — RY might look like

where the first dashed red line depicts C—q, while the second one shows C_; and
the third one shows C_s. More generally, for U = (0,1) ~ R in Cart a cut (in this
case an area) for the projection M x U — U might look like



Remark 8.30. Looking at the above definition more closely we realize:
e A cut [m]-tuple C = (C}) je[m] also satisfies
C>m ... C C>U

e We again obtain a functor Cut € Psha(FEmb,) that associates to an

object ([m], M 5 U) the set of cut [m]-tuples of p. To a morphism
this functor associates a map of sets that takes preimages of the cuts and
reindexes them according to the map of simplices. That is, a face map
removes a cut and a degeneracy map duplicates a cut.

Notation 8.31. For a cut [m]-tuple as in the above definition, we write
C(j’j/) = C>j N C<j/, C[j,j/] = C)j N ng/
for j < 7' € [m].

Having this notion of cuts of objects in FEmb,, we shall start with a precursor
to the co-bordism categories we are trying to build:

Definition 8.32. Let d > 0 and fix (m,(l),U) € A*? x I' x Cart. The category
B(m,{l),U) is given by the following data:
e An object of the category B(m,{l),U) is a bordism given by

— A d-dimensional smooth manifold M (possibly open).

— A d-tuple C = (C")%_, of cut [m;]-tuples C? for the projection M x
U—-U.

— A chosen map P: M x U — (l), which partitions the set of connected
components of M x U into [ disjoint subsets and another subset cor-
responding to the basepoint * (the slot P~1{} is referred to as the
trash bin).

Such an object must satisfy the transversality property:

— For every subset S < {1,...,d} and for any map j: S — N with

Ji < my for all i € S, there is a smooth map h;: M x U — R? such
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that for any i € S the map
i © hjZ MxU—->R
where m;: RS — R is the projection onto the i-th factor, yields the

ji-th cut C3_ in the cut tuple C*. In particular, the fiberwise-regular
values of (hj,p): M x U — RS x U form an open neighborhood of
{0} xUcRY xU.
The collection of cut tuples C' = (C?) is then called a cut m-tuple. For
notational convenience, let

Cugn=[1Chan:  Cuan=[)Cuan
€S €S
for all 7,5 : S — N with j; < jl < m; for allie S.
For j and j' as before, we also set
core(M,C,P,j < j') = C[jyj,]\P_l{*}

and we require this set to be fiberwise compact for all choices of 7, 7/, that
is, for each u € U, the intersection

core(M,C, P, j < j') np~'{u}

is compact for all choices j,j’. We will omit P in the notation if there is
no danger for ambiguity. In the case where S = {1,...,d} and j = 0 and
Jji = m, for all i, we set

Core(M,C, P) := Cpj j\P~ {*}
and we call it the core of the bordism (M, C, P).
A morphism in the category B(m,{l),U) is a cut respecting embedding:
That is, a morphism from a bordism (M, C, P) into a bordism (]\f\j7 C~’7 ]3)
is given by a smooth map ¢: M x U — M xU covering the identity on
U (that is ¢ = by x idy: M x U — M x U) such that for all u € U, the
restriction ¢: M x {u} — M x {u} is an embedding of smooth manifolds.
Moreover, v satisfies the following properties:

— For any j,j5': {1,...,d} - N with j; < ji < m, for all 4, there is an
open set Yj € M x U containing the core Core(M,C, P, j < j') such
that for any open subset W; ;;  Yj i containing Core(M,C, P, j <
j'), the map ¢ restricts to a fiberwise diffeomorphism

Wi — Wi
where WM’ - core(]\7, 5’, IS,j < j') is open. Furthermore, we de-

mand that the restriction of ¢ to W; ;: satisfies ¢(C}) = CN’; for all
cuts in the grid, meaning that after restricting the cut tuples C;» and
CN'; to Wj ; and Wj,j respectively, the map ¥ maps the subsets in the
triple C’; to corresponding subsets in the triple C]’

— 1) respects the partition maps P and P by ensuring commutativity
of the diagram

M x U
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Compostion of two such morphisms ¢¥: M xU — M x U and : MxU —
M’ x U is given by (p10%¢1) xidy: M x U — M' x U.

Remark 8.33. Some remarks are in order:

g,

The transversality condition precisely ensures that the cut [m;]-tuples C?
intersect transversally with each other.

The partition map P: M x U — (I} is allowed to have some slots being
the empty set, that is, we allow P~'{k} = & for some k € (I).

The trash bin corresponds to those connected components of the manifold
which are actually irrelevant for the bordism at hand.

We may extend the above definition to obtain a functor

B: (A*? x I' x Cart)°P — Cat, (m, (1), U) = B(m,{1),U)

A coface map d*: [m; — 1] — [m;] in the i-th factor of A*¢ is mapped
to the face map which removes the k-th cut from a given cut [m;]-tuple
(for the outer face maps this also shrinks the core appropriately). A code-
generacy map s*: [m; + 1] — [m;] in the i-th factor of the product A*¢
is sent to the degeneracy map that duplicates the k-th cut in a given cut
[m;]-tuple. For I'; a map {I) — {I') is simply composed with the given
partition map P: M x U — (I} (this may possibly shrink the core). For a
smooth map £: V — U (a morphism in Cart) we realize that the smooth
map E:: idyy X &: M xV — M x U defines a morphism

(MxV—=>V)S(MxU-U)

in FEmb,. This morphism induces the functor

B(m, (1), &): B(m, {I),U) — B(m,{l), V)
which takes an object (M, C, P) and maps it onto the bordism

(M,EC, M xV S MxUS @)

where
1C= (0L, E10 = (0L, 0005 e
which is a cut m-tuple for M x V — V. A morphism (M,C, P) KA
(M, C, P) is mapped to

(M,71C, P o) "5V (M, €710, P o)

Ezample 8.34. For d = 0, an object in B({I),R°) is really just a 0-dimensional
manifold (a disjoint union of points). Morphisms boil down to diffeomeorphisms of
such 0-manifolds (bijections of finite sets).

Ezample 8.35. Let d = 2. Then an object in the category B(([1],[1]),{1),R) is
given by a triple

(M,C = (C',C?),P)

where M is a 2-dimensional manifold and C*,C? are cut [1]-tuples for M ~ M x
R? — RO. This could look like
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where the partition map P: M — (1) has preimages P~*{1} = M and P~1{x} = &.
The core of this bordism is the area (CLynCL ) N (C2,nCZ)), i.e., the rectangular
shape that is determined by the above cuts (the colored region). A morphism
1: M — N between two such bordisms might look like

where 9 restricts to a diffeomorphism on the shadowed neighborhoods of the re-
spective cores.

Definition 8.36. Let d > 0. The d-uple bordism category (with no geometric struc-
ture) is the object Bord (s g4y upte in the (model) category (see Definition 7.98)

€~ Cat%gfg)l ¢
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given by composition of the functor B with the nerve functor J1:

(AX4 x I' x Cart)°P B Cat
Bord(4,x),uple N
sSet sSet

Remark 8.37. Note that we are not claiming that Bord e, g),uple 1S a fibrant object
in %wCatE@o’clfg)le. For the time being, we shall pretend Bord (4 ) uple to be a smooth
multiple symmetric monoidal (00, d)-category. We will elaborate later why this is
justified.

Ezample 8.38. Let d = 1. An object of Bord(y,1) (in this case uple is redundant)
is given by a vertex in Bord s 1)([0],{1),R°) (or more generally, replace R by
U € Cart). Such a vertex is given by a triple

(M,C, P)

where M is a 1-dimensional manifold and C' is a cut (a point) for M x R® — RC.
This could look like

A 1-morphism in Bord (e, 1) uple is given by a triple
(]\/[/ C= (Cla CQ)aP)

where M is a 1-dimensional manifold, and Cy,Cs are cuts for the projection M x
RY — RO:

Domain and codomain maps are given by the maps Bord s, 4),uple(d", (1), R?) and
Bord,,1)(d", (1), R?), which we can depict by

/]\/X\/

2VAVIAVAV,
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Example 8.39. Let d = 2. An object of Bord e, 2)uple is given by a vertex in
Bord (2 upte (([0], [0]), (1), R?) (or more generally, we could take U € Cart arbi-
trary instead of R?). This in turn is given by a triple

(M,C = (C*,C?),P)

where M is a 2-dimensional manifold and C', C? are cuts for M ~ M x R% — RO
and could look like

from which we realize that such an object simply boils down to a point of the
manifold M (the core of the bordism) which is given by the intersection CL n C2.
A general object (so if U € Cart is arbitrary) is therefore a U-indexed smooth
family of points in M. A 2-morphism in Bord o) upie 18 given by a vertex of
Bord s, 50) upte (([1], [1]), (1), R?) (again we can make this more general by letting U
be arbitrary) which might look like the top left (or right) torus with the pictured
cuts:
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The arrows pointing downwards to different images describe corresponding domain

and codomain maps of horizontal morphisms (red lines) and vertical morphisms

(blue lines). For example, looking at the left column, the first manipulation is ap-
plying the map Bordg uple(([1],d°),{1),R?) to our given bordism. This says that

the given 2-morphism has as its vertical codomain the 1-morphism as depicted in the
middle left. The second manipulation is given by applying Bord(m_’d),uple((dl, [0]), (1), R?).
This yields the domain (a point of our manifold) of the given vertical 1-morphism.
Analogously for the right column.

Remark 8.40. The simplicial presheaf Bord(s 4)uple satisfies Segal’s special A-
conditions: For notational convenience let us restrict to d = 1. We then have
an induced pullback diagram

BOI‘d(OO’l) ([a + b], <l>, U) Bord(x,1) (Pa—...—b:{),U)

T ‘A m » Bord(go71)([b]7<l>v U)

Bord (e, 1) (Po—...—a,XD,U) Bord (po.(5.0)
Ord (o0,1) (P0,Ct)s

¥

Bord(oc,l) ([0]7 <l>’ U) Bord(oo,l)([o]’ <]>v U)

N
Bord(x,l) (pu7<l>7U)
where

P == Bord(o,1)([a], <), U) XBordq, ., ([0].¢15,0) Bord e 1) ([b],<1), U)

is the corresponding pullback. The morphism p (obtained by means of the universal
property of R) is given by

p = (p1,p2)
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where py = Bord (g 1)(Po—...a,{I), U) and py = Bord (e 1) (Pa—s... b, ), U). Ex-
plicitly, the morphism p takes vertices

(M,C = (Cy,...,Cats), P)
in Bord(,1)([a + b],{l),U) to pairs of vertices
|(M,(Co,...Ca), P), (M, (Car .., Co), P)| € B
I-simplices in Bord(y,1)([a + b],{1),U) (cut-respecting embeddings)
(M.C.P) % (M,C, P)
are mapped to 1-simplices in P given by
(M, (Co,...,Ca), P) 5 (B, (G, Ca), P), (M, (Cay.., Cass), P) 5 (M, (G i), P) |
For the remaining simplicial layers it is clear how p acts (the higher layers are just

composable chains of cut-respecting embeddings). A general vertex in the pullback
B is of the form

((M,C, P), (M,C,P)) € Bordy ([a], (I}, U) x Bordy([b], (), U)
with the property that
Bordy (pa, 1), U)((M, C, P)) = Bords (po, 1), U)(M, C', P)
which is equivalent to
(M,C,,P) = (M,C,y, P)
Hence M = M , P = P and C, = a) In particular, the map p has an obvious
inverse: A vertex
(M, (Co, -, Ca), P), (M, (Cas -+, Caryp), P))
is mapped to
(M, (Cy,...,Cossp), P)

which verifies, in particular, that p is a weak equivalence. This, however, is precisely
the Segal condition. For ¢ = b = 1 and U = R?, we get the following picture: A
vertex in Bord o 1)([2], (1), R°) is given by a picture like

/NN

Applying the map p and then using the composition operation given by Bord . 1 (d*,{1),R?),
for d*: [1] — [2], yields
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So composition of 1-morphisms in Bord(y 1) is just forgetting the middle cut.

8.3. Bordism Categories with Geometric Structures. In the previous Chap-
ter we have defined bordisms with no additional structure. We would like to en-
dow bordisms with geometric structure, that is, we want to imprint the struc-
ture of a simplicial presheaf S € Psha(FEmby) into the very fabric of the bor-
disms we consider. In order to define a corresponding object in the category
Psha(A*4 x I' x Cart) we again need a precursor:

Definition 8.41. Let d > 0 and let S € Psha (FEmb,) be a geometric structure. For
fixed (m,{l),U) € A*? x I' x Cart, the simplicial object BS(m, (I}, U) in Cat is
given by the following data:
e The simplicial set of objects is given by
Ob:= [] SWMxU-U)
(M,C,P)
where the coproduct ranges over all objects (M, C, P) in Definition 8.32
with M a d-dimensional manifold, C a cut m-tuple for the projection
M x U — U and P a partition M x U — {I) of connected components.
In particular, (M, C, P) must satisfy the transversality condition.
e The simplicial set of morphisms is given by
Mor := H S(M x U — U)
(M,C,P)%(M,C,P)
where the coproduct is taken over all the cut-respecting embeddings from
Definition 8.32.
e The target map cod: Mor — Ob sends the component indexed by a cut-
respecting embedding v¢: (M, C, P) — (M, C, P) to itself by identity:
cod,: Mor,, = Ob,, (1, s€ S(M x U = U),) — (M, C, P), s)
Next, since

(1h,idy): (M x U —» U) — (M x U — U)
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constitutes a morphism in FEmb,, the arrow
S(¥) == S(1h,idy): S(M x U — U) — S(M x U — U)
makes sense. The source map dom: Mor — Ob pulls back the component

indexed by a cut-respecting embedding 9: (M, C, P) — (]\7, C, ]3) by the
morphism v via S:

dom,: Mor,, — Ob,, (1, s€ S(M x U — U),) — ((M,C, P),S(1))(s))

e Composition is induced by functoriality of S: For morphisms

my == (M,C,P) 5 (M,C,P),se S(M x U — U),,)
ms = (M,C,P) S (M',C",P'),s e S(M' x U - U)p)
in Mor,, such that dom,,(m2) = cod,,(m1), we set
ms omy == ((M,C,P) %Y (M, C", P'), &)

This is well defined, since

domy, (m2 om1) = (M, C, P),S(po9)(s))
= ((M,C, P),S()S(¢)(5))
= ((M,C, P),S(¥)(s))
= dom,,(mq)

and cod, (mg omy) = (M',C", P'),s') = cod,,(m2).

Remark 8.42. Let us point out some subtleties:

e If S = « is the terminal functor (so we have no geometric structure), then

BS(m, (1), U) is just B(m,{l),U) but interpreted as a constant simplicial
object in Cat (recall Definition 8.32).

e We may extend the above definition to obtain a functor

BS: (A% x I' x Cart)® — Cat®”,  (m,{),U) — BS(m, 1), U)

The coface map d*: [m; — 1] — [m;] in the i-th factor of the product A*4¢
removes the k-th cut in the corresponding cut [m;]-tuple in the indexing
triple (M, C, P) of the coproduct. Analogously, the codegeneracy map
sk: [m;] — [m; + 1] duplicates the k-th cut in the corresponding cut [m;]-
tuple in the indexing triple (M, C, P) of the coproduct. For I', a map
{> — (") is simply composed with the corresponding partition map in an
indexing triple (M, C, P) in the coproduct. For a smooth map &: V — U
in Cart an object in the n-th layer ((M,C,P), s € S(M x U — U),) is
taken to

(M, £71C,Pog), SE)(f)eS(M xV - V),)
where we recall that E = idys x €. A morphism
(M,C,P) 5 (M,C,P),se S(M x U — U),)

in the n-th layer is taken to

(M, 710, Pod) "V (M,E71C, P od), S(E)(s) e S(M x V - V),)

Definition 8.43. Fix d > 0 and let S € Psha(FEmby) be a geometric structure.
The d-uple bordism category with geometric structure S is the object Bord?oc’d%uple
in the (model) category (see Definition 7.98)

o ®,uple
‘4 Cat(oovd)



given by the following composition of functors:

S o
(A*d % I' x Cart)? —2— Cat®”
Bord(soc,d),uple N
sSet Psha(A)

diag
where diag: Psha(A) — sSet takes the diagonal of a bisimplicial set
Psha(A) 3 X — (diag(X) € sSet, [n] — Xpn.n)
and M: Cat®” — Psha(A) takes the (usual) nerve levelwise.

Remark 8.44. If we have no geometric structure, that is, if S = « is the terminal

simplicial presheaf on FEmb,, then Bord(swﬁd)_’uplc = Bord (x,4),uple-

leml (recall Example 8.12). Vertices in Bordeeml([ 11,<1),U)

Ezample 8.45. Consider Bord (1)

are given by

Bord(5™ ([1],(1), U)oy = diag o RBU™ ([1], (1), 1)([0])
= 9,1(]3RiemI ([1]7 <1>7 U)O)O
_ Ob(BRiem; ([1]7 <1>7 U)O)

[[ Riem|(M xU - U)
(M,C,P)

(00

For U = R°, an element of Riem! (M x R® — RO) is precisely a Riemannian metric

)
m on M, and therefore a 1-morphism in Bord -~ (where we disregard the U-

(@ 1)
parameter by letting it be RY) is given by a quadruple
(M,C, P,m)

The Riemannian metric m then gives rise to an ordinary metric dmy: M x M — Rxq
on M given by

dm = inf j\/ m(%, ) dt
a-bb

where « is a path [0,1] — M with 4(0) = a and (1) = b. In particular, we have
bordisms with lengths. For example, a 1-morphism may be depicted by

TN N\

where [ denotes the length assigned to the core of the depicted bordism. Composi-
tion of such 1-morphisms is then depicted by
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which boils down to forgetting the middle cut and adding Riemannian lengths.

We note that the construction of Bord(SOQ d),uple Seems a bit weird at first glance.
One reason for this is for example that for any triple (m,{l),U) the partial eval-
uation Bord(soo’d)}uple(m,<l>, U) is not a Kan complex, which is one of the crucial
properties we have for a prospective (o0, d)-category. The reason for this is that we
construct Bord?w’d%uple by means of the nerve of a category. We can amend that
however by passing to germs.

Definition 8.46. Let S € Psha(FEmby) be a d-dimensional geometric structure
and consider a bordism (M, C, P), as in Definition 8.32, along with the canonical
projection p: M x U — U.

e The S-germ associated to (M, C, P) is given by

Sco(M x U U) = 1i S(V 1%
oM xU=>U):= _ colim SV = pl))

where the colimit is taken over the poset of open subsets V < M x U
containing the subset core(M, C, P).

e By functoriality of S we can pull back along fiberwise cut-respecting em-
beddings ¢: M x U — M x U, where we restrict to neighborhoods of the
core. Indeed, by considering the diagrams

S(V) ———— Se¢(M xU - U)

A

S(¥) Sc(¥)

S(V) ————— Sc(M x U - U)

for V.« M x U and V where 1) is interpreted to be its restriction to V,
we obtain a map S ().
e The simplicial object gB(m, {l),U) in Grpd (the category of groupoids),
for (m,{l),U) € A*4 x I' x Cart is given by the following data:
— The simplicial set of objects is given by
Ob:= [ Sc(MxU-U)
(M,C,P)

where the coproduct ranges over the objects in Definition 8.32.
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— The simplicial set of morphisms is given by

Mor := [ [ Sc(M x U - U)
a(¥)
where the coproduct is taken over all germs g(v) of fiberwise cut-
respecting embeddings ¥: M x U — M x U from Definition 8.32.
More in detail, two fiberwise cut respecting embeddings 1,1’ : M x
U — M x U are identified if they agree on an open neighborhood V' <
M x U, which contains the subset core(M, C, P). The corresponding
equivalence class is then denoted by g(¢). Target and domain maps
for the individual simplicial layers, and the respective composition
operations are given analogously as in Definition 8.41.
— The above assignment collects into a functor

gB: (A*4 x I' x Cart)°® — Grpd, (m, (1), U) — gB(m, {I),U)

— The germy smooth (oo, d)-bordism category gBord(SOO’d)
the composition of functors

Luple 1S given by

S (o)
(A% x [ x Cart)® —2 5 Grpd®”™
gBord(Soo,d),uple N
sSet o Psha(A)

similar to Definition 8.43.

It turns out that gBord(Somd)’uple and Bord(smd),
sense. Indeed, consider the germification map

uple are equivalent in the proper

germ: Bord(soo)d))uple — gBord(Soo’d)’uple

which sends a bordism to the S-germ of its core. More precisely, for (m,{l),U) €
A*d x ' x Cart, the map of simplicial sets getm(m, {{),U) is given by applying
diag o 91 to the functor

BS(m, (1), U) — B (m, (1), V)
which maps objects (in some simplicial layer)
((M, C,P), se S(M x U — U)) - ((M7 C,P), a(s) € So(M x U — U))

where g(s) is given by the image of s under the canonical map S(M x U — U) —
Sc(M x U — U). For morphisms we have the assignment

'l/) ~ ~ ~ ~
(M,C,P) > (M,C,P), se S(M xU — U)) — (a(¢), 9(s))
sending both 1 and the geometric structure s to its corresponding equivalence
classes. With these definitions we have the following result:
Proposition 8.47. The germification map

S S
germ: Bord(ao,d)’uple — gBOYd(oo,d),uple

defines an objectwise weak equivalence, that is, the maps
germ(m, (1), U): Bord(soo,d),uplc(mﬂ H,U) — gBord(Soc,d),uplc (m, (), U)
are weak equivalences of simplicial sets.

Proof. This is Proposition 4.2.4 in the updated version of [16]. O
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Remark 8.48. The previous proposition verifies that both variants of bordism cate-
gories are equivalent, so that we can choose each of these for practical applications.
However, it is very much clear that not having to care for germs all the time is
much more comfortable.

Remark 8.49. The previous Proposition also makes clear that the crucial informa-
tion of a bordism in Bord(SOO, d),uple 18 fully contained in the core of the bordism and
a germ of the geometric structure S around the core. For (M,C, P) a vertex in
Bord(sw’d)#ple(m, {5, U), we will call M x U the ambient manifold of our bordism,
while core(M, C, P) is the information we really need. It seems as if the ambient
manifold is entirely redundant here. This is not the case, as it provides quite a
useful way to think about composition of bordisms with geometric structure, as we
will explore later.

8.4. Bordisms with Isotopies. The reader familiar with the paper [24] might
remember that higher morphisms in the corresponding bordism category defined
there were isotopies (higher isotopies) between diffeomorphisms. We have another
variant of the bordism category which incorporates isotopies between cuts and is
therefore somewhat more reminiscient to [24]. This variant turns out to be the more
important one. This requires further preliminary definitions and another precursor.

Definition 8.50. Let [ € N.
e The extended l-simplex is the set

§hi={te R Yt =1}

The compact part of ' will be denoted by 6% and it is given by
L= |Al = {teRY) | Yt =1}

e A §'-family of cuts of an object M L Ui FEmby is a collection of cuts
C:={(C<,C=,Cs); | ted'}

with the property that there exists a smooth map h: 6 x M — R such
that for all ¢t € ', the map h; = h(t,—): M — R gives rise to the
cut (C,C_,Cs); as in Definition 8.24. We identify two such d§'-indexed
collections if they have the same germ around the compact part of d', i.e.,
if C and C are two &'-families of cuts, then C' ~ C if there exists an open
neighborhood U < 6! of 6. such that

hluxm :%‘UXIW

where h and h are the corresponding smooth maps 6/ x M — R which
realize the &'-families of cut tuples C' and C.

e We then also have an evident notion of §'-families of cut [m]-tuples: A
8'-family of cut [m]-tuples is a collection

C = A{Ci = (Cajn) C=(i) C> (i) jetmy | £ € 0}
of cut [m]-tuples C; such that for each j € [m] there exists a smooth
function hj: 5" x M — R so that hey = hj(t,—): M — R gives rise to
the j-th cut in the cut-tuple C; (as in Definition 8.24).
Remark 8.51. Some remarks are in order here:

e We have an ordering of §'-families of cuts, given by C' < C” if and only if
Cgt = O, for all ¢ in some neighborhood of =L
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e The above definition gives rise to a simplicially enriched functor
Cut: AP x FEmbP — sSet

which maps a pair ([m], M LU ) to the simplicial set whose I-simplices are

given by §!-families of cut [m]-tuples on M L U. The face and degeneracy
maps of the simplicial set Cut([m], M — U) take the j-th entry of some
[-simplex given by a smooth map h; : 8" x M — R to the compositions

d*|xid h;

f NN Y A LU SN TRV VL RN -
sFxid h;

f SNV Y G LU LN TRV VL N -

where |s¥| and |d*| are defined via (1). The simplicial structure map

A([n], [m]) x §Emby(M > U, N = V) — Map(€ut([m], g), €ut([n], p))
takes I-simplices on the LHS, say, the pair (w, (fi, F')sest), where w is either
a coface map d*: [n] — [n + 1] or a codegeneracy map s*: [n + 1] — [n],
into the simplicial set whose k-simplices are given by homotopies

AF x eut([m], g) — Cut([n], p)
Our associated induced map then has components
Ak ewt([m], q), — Cut([n], p),
(9, (Ct)tesr) — (W*f‘;ﬂ(t)(ct))te&

where w*, depending on whether w = d® or w = s°, either removes the all
the a-th cuts in the corresponding 6"-family of cut tuples, or dublicates it.

e We may extend the above simplicially enriched functor €ut to also include
cuts in different simplicial directions: Interpret a subset A < {1,...,d} as
a discrete category. We define the functor

Cuth: (A°P)4 x FEmbJ® — sSet

which takes a pair (m, M — U) to the simplicial set whose [-simplices are
the subset of the product

Cuth(m, M — U); © | | €ut([ma], M — U),
acA
consisting of those §'-families of cut tuples that satisfy the transversal-
ity condition as given in Definition 8.32. Face and degeneracy maps are
analogous to what we defined before, and what qutﬁ does to morphisms
from (A°P)4 and FEmb, is also in the same spirit as for €ut. More pre-

cisely, Cuty is a subfunctor of the product of functors [] €ut: (A°P)4 x
acA

FEmb;” — sSet. For A = {1,...,d} being the whole set, we shall write
Cuty, = (’:utﬁjl"""

whenever the dependency on the dimension d is evident.
Lemma 8.52. Let (m,{l),U) € AX? x I' x Cart and fiz a d-dimensional manifold

M and a partition map P: M x U — {I). Let C be a §*-family of cut m-grids on
the projection p: M x U — U. Then for each uw € U, the union

tot(M,C, P), = U core(M,C, P); .,

tedk
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where
core(M, C, P); , == p~*{u} n core(M, C, P)
18 compact.
Proof. This is Lemma 4.3.3 in [16]. O

Based on the previous Lemma we have the following:

Definition 8.53. Let M, C and P be as in the above Lemma. We call tot(M, C, P),
the total core of the 6*-family of cut m-grids at u. The union
tot(M,C, P) = | ] tot(M,C, P),,
ueU
is called the total core of C.

With that out of the way, we define a precursor to our bordism categories with
isotopies:
Definition 8.54. Let d > 0. For fixed (m,{l),U) € A*? x I' x Cart, the simplicial
object B(m,{l),U) in Cat is given by the following data:

e The simplicial set of objects, whose vertices are called bordisms, is given
by

Ob = H Cuty(m, M x U — U)
(M,P)
where the simplicial set €uty, was defined in Remark 8.51 and the coprod-
uct ranges over all pairs (M, P) as given in Definition 8.32.

e In order to define the simplicial set of morphisms let us first define the
following simplicial subset: For a pair (M, P), (M, P) as in Definition 8.32,
we define a simplicial subset

Mmeut((M, P), (M, P))
of
Femby(M x U — U, M x U — U) x Cuty(m, M x U — U) x Cuty(m, M x U — U)

where FEmb, (M xU — U, MxU —» U) is the Hom-object of the simplicial
category F€mb, from Remark 8.5. An [-simplex of the simplicial subset
Mmeut((M, P), (M, P)) is a triple

(z/;:z/JlxidUzélxMxU—)MxU, C, 6’)

We require that for all ¢t € ¢!, the corresponding fiberwise embedding
Yi: MxU — MxU is, in particular, a fiberwise cut-respecting embedding
in the sense of Definition 8.32 with respect to the corresponding cut m-
grids Cy and 5}. In particular, we require that ¢ is compatible with the
maps P and P in the sense that the induced map on connected components

Vot mo(M x U) = mo(M x U x 8) — mo(M x U)
satisfies ]51/1* = P. Having all that, the simplicial set of morphisms is
given by

Mor:= [ mew(M,P), (M, P))
((M,P),(M,P))
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e The source map dom,,: Mor,, — Ob,, in the n-th simplicial layer takes a
morphism (((M, P), (M, P)),¢,C,C) and maps it onto ((M, P),C). The
target map cod,,: Mor,, — Ob,, in the n-th simplicial layer takes a mor-
phism (((M, P), (M, P)),v,C,C) to (M, P),C).

e Composition of two morphisms m; = (((M,P),(M,P)),,C,C) and
me = (((M,P),(M’',P")),y',C,C") in the n-th simplicial layer may be
defined by setting
mgomy == (((M,P),(M',P"),¥: 6" x M xU — M' xU,C,C")
where W} := (1), o (1), for all t € ™.

Remark 8.55. Yet again we may extend the above definition to obtain a functor
B: (A x I x Cart)®® - Cat™”,  (m,{),U) - B(m, ), U)

With that in our toolkit we may finally give a precise definition of the bordism
categories with isotopies we are so interested in:

Definition 8.56. Fix d > 0. The d-uple bordism category with isotopies (without
geometric structure) is the object Bordy ypie in the (model) category (see Definition
7.98)

e ®,uple
' Cat(ooyd)

given by the following composition of functors:
(A4 x I x Cart)? —2 5 Cat™™
%ota@o,d),uple RI¢

sSet Gz Psha(A)

Ezample 8.57. A vertex in Botd(q 4) uple(m,{l),U) is the same as a vertex in
Bord (o, 4y uple (M, (1), U), since §%-families of cut-grids are just single cut-grids. n-
simplices in Bord () uple (M, {I), U), on the other hand, are given by

Bord (05,4 uple (M, 1), U), = diag o N(B(m, {{),U))n
= N(B(m, ), U)n)n
In other words, such an n-simplex is given by n-many composable triplets
(520" x My x U — M; xU, Cj1, Cj)i_y
where the v; are §"-families of cut-respecting embeddings, while the C; are 6"-

families of cut m-grids.

Finally, it is time to add some more geometry to this flavor of a bordism category.
For this, let us again start off with yet again another precursor.

Definition 8.58. Let d > 0 and let S € Psha (FEmb,) be a simplicial presheaf on
the enriched site F¢mby. For fixed (m,{I),U) € A*? x I' x Cart, the simplicial
object BS(m, (1), U) in Cat is given by the following data:
e The simplicial set of objects is given by
Ob:= [[ Cuts(m,M x U - U) x S(M x U - U)
(M,P)

where the coproduct ranges over the pairs (M, P) from Definition 8.32 and
Cuts was defined in Remark 8.51.
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e The simplicial set of morphisms is given by
Mor:= [  9mewt((M,P),(M,P))xS(M xU 1)
((M,P),(M,P))

where the coproduct ranges over pairs ((M, P), (]\7 ,P)) as given in Defi-
nition 8.32 and 9Meut was defined in Definition 8.54.

e The source map dom,,: Mor,, — Ob,, in the n-th simplicial layer sends a
morphism

(M, P), (M, P)),¢,C,C,s € S(M x U - U),)
to
(M, P),S(¥)(s) € S(M x U - U))

where S(1)(s) is provided by means of the enriched presheaf structure
maps

Femby(M x U — U, M xU - U) x S(M x U — U) —> S(M x U — U)

The target map cod,,: Mor,, — Ob,, in the n-th simplicial layer sends a
morphism

(M, P), (M, P)),¢,C,C,s € S(M x U - U),)
to
(M, P),s)
e Composition of two composable morphisms
my = (M, P),(M, P)),¢,C,C,s € S(M x U — U),)
my = (M, P),(M', P')),s/,C,C",s' € S(M' x U — U),,)
is given by
(M, P), (M, P')), 9,C,C", )
where W} := ('), o (1), for all t € ™.
Remark 8.59. Again, the previous definition collects into a functor:
BS: (A4 x I' x Cart)® — Cat®”,  (m, ), U) — BS(m, ), U)

Definition 8.60. Fix d > 0 and S € Psha(FEmby). The d-uple bordism category
with isotopies and geometric structure S is the object %utb?w,d) in the (model)
category (see Definition 7.98)

,uple

e ®,uple
‘4 Cat(ooyd)

given by the following composition of functors:

S o
(A% % ' x Cart)? — 2 Cat®”
%Ufa(soo,d),uple N
sSet - Psha(A)

diag
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Ezxample 8.61. Consider the 1-dimensional geometric structure with isotopies Dﬁ‘iemi

iem! .
from Example 8.18. The datum of a vertex in %otbzml([l]KD,RO) is the same

iom!
as a vertex in Bordi‘o‘ilf)l ([1],¢1),RY), that is, a triple (M,C,m) where M is a 1-
dimensional manifold, C' is a cut [1]-tuple on M and m is a Riemannian metric on

tem
M. On the other hand, a 1-simplex in %Otb?;lfsl ([1],<1),R?) is given by a tuple

(w: M x 51 - M? Ca 57 (mt)teél)

where 1) is a §'-family of cut-respecting embeddings M — M with respect to two
§'-families of cut [1]-tuples C' and C for M and N, respectively. Applying the face
maps dop and dy to the above tuple yields

(M, Cimgsfim0), (M, (" C)im, ")
One such 1-simplex could for example be given by
(’(/)7 07 C7 (mt)t€61 = (m)teﬁl)
where
w:Afxélﬁ]f\jf, Y(m,t) =m

and m is a metric on M, while C' = (C});es1 is the §'-family of cut [1]-tuples given
by keeping the cut locus C_g ;o) fixed and moving the cut locus C_(; ;—¢) to
C:(o,tzo)i

Remark 8.62. In the above example it might seem as if the explicit 1-simplex
(¥, C, C, (m)ses1) from the above example (or any more general 1-simplex) collapses
the data of the Riemannian length. However, this is not the case as the §'-family
records the information of the entire family of Riemannian lenghts. This is best
showcased by referring to the Segal formalism:

(0.1

In the above, [0,{] denotes the manifold with Riemannian length, the arrow «
denotes the isotopy of points which moves the endpoint in [0,] to the starting
point.

Example 8.63. Let us consider

X —
Bord 11 ([0], (1), V)

An [-simplex in the above simplicial set is given by a composable I-tuple of mor-
phisms in the category %"E(RdXU_”U))Z:

(j: 6" x Mj_y x V. — M; x V, Cj_1, Cj, (f;,F})),
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where the v; are §'-families of cut-respecting embeddings, M. 7 < R are open sub-
manifolds, the C; are §!-families of cuts, while

(fjaFj) GSQfmbd(Mj xV — V,R x U —» U)l

is a 0'-family of fiberwise embeddings. In other words, fi ot x M; xV - RxU
and Fj: V — U are smooth maps such that

MjXVLRXU

_

Vv 2 U

represents a morphism in FEmb for all t € §'. So f;(¢, —) embeds the fiber M; x {v}
into R x {F(v)}.

¢®(77x)
(c0,0)
with the geometric structure from Example 8.19. We note that, since d = 0, vertices
in %ota(@OO (03,36) ((1),U) are elements in the set

Ezample 8.64. Consider the 0-dimensional bordism category Botd endowed

CP(M x U, %) = | [67(U, %)
M

where M is a 0-dimensional manifold (a disjoint union of points). An [-simplex in

Bord(e;c (0;’36)(<1>, U) is given by an I-tuple

(j: 6" x Mj_y x U — M; x U, o),
where ¢ is a diffeomorphism, while a: 6/ x N x U — ¥ is a smooth map.
Remark 8.65. All cylinders in a fibrant replacement of %otb(sooy q) are invertible. For
example, for d = 1 consider an interval with source cut-tuple Cy := (C<q, C—g, C~0)
and target cut-tuple Cy = (C.1,C—=1,C>1). The source cut-tuple is induced by a

smooth map h: M — R. Consider the additive inverse —h: M — R which results
in a new cut

Dy = (D<g := Cs0, D=g == C=g, D¢ = C<)
Now consider the isotopy i of points (an element of %otb(soo, 4)(0)1) which transports
the cut D_g to the source cut C—y. All this results in a diagram

i (50)xe
°
(50)ex

(where (S0)ex; (So)xe are the respective identities in the different simplicial direc-
tions) which may be viewed as a morphism of simplicial presheaves

€€ Hom(]_L %Ota(soo’d))

where | | does not denote the coproduct, but rather the glueing of corresponding
copies of Al, and Al,. Now let R be some fibrant replacement functor, then we
have the lifting problem



11 - ‘BO’CD(SOO’I) S R%oto(soo’l)
Y
€Cof™ _,_,.33’“'>. eFib
Al x AL, - M

which has a solution Jg that may be depicted by

° °
(So)n

The S thus obtained will be an inverse to the initial bordism «. Indeed, « itself

gives rise to a square
«

(50) ex

. .
(So o

We can then glue these two squares to obtain

[ ]
(50)ex (50)ex (50)ex

Considering the glueing of the two squares to the right we obtain «f ~ id, while
considering the glueing of the two squares to the left results in Sa ~ id.

8.5. Globular smooth Bordism Categories. We defined essentially two differ-
ent d-uple-bordism categories with geometric structures S denoted by Bord(soo’ d),uple

and %otb(soo,d) From these two, we shall extract globular bordism categories

,uple*
S S
Bord(oo,d),glob and %otb(md)’glob .

Definition 8.66. Let d > 0 and let S € Psha(FEmby) or S € Psha (FEmb,) (de-
pending on the bordism category) be a geometric structure.

is defined as follows: Let

e The globular bordism category Bord(w d),uple

Bord(oo,d),glob c Bord(oo,d),uple

be the subobject whose value at (m,{l),U) with m = ([m4],...,[mq4]) is
the diagonal of the nerve of the simplicial subobject B;Ob whose simplicial
set of objects is given by taking only those summands in Definition 8.41
that are indexed by triples (M, C, P) satisfying the following property:
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— If
(M,C,P)e BOI’d(oo,d),uple(([mlL ooy [mica ], [0], [miga]s - o, [mal), <D, U)

for some 1 < ¢ < d, then (M, C, P) lies in the same connected com-
ponent as a simplicial degeneration of an object in

Bord (s, ¢y uple (([m1], - - -, [mi—1], [0], ..., [0]),{),U)
in the simplicial directions ¢ + 1,7 + 2,...,d.
e The globular bordism category with isotopies %otb(sm’d)glob is defined as
follows: Let

S S
%Uta(oc,d) glob & %Ota(oo,d) ,uple

be the subobject whose value at (m,{l),U) with m = ([m4],...,[mq4]) is
the diagonal of the nerve of the simplicial subobject ‘Bglob whose simplicial
set of objects is given by taking only those summands in Definition 8.58
that are indexed by triples (M, P) satisfying the following property: If

(]\/jv C? P) € sBUtb(oo,d),uple(([Tnl]v SRR [mi—l]’ [O]v [m‘i-‘rl]v R [md])v <l>v U)

where C is a §°-family of cut m-tuples (that is, C' is one cut m-grid) for
some 1 < i < d, then (M, C, P) lies in the same connected component as
a simplicial degeneration of an object in

%Ota(w,d),uplc(([ml]v R [mi—1]7 [O]v R [O])’ <Z>a U)

in the simplicial directions ¢ + 1,7 + 2,...,d.

Ezxample 8.67. Let d = 2, then the following image depicts a cut tuple in the globu-
lar bordism category in bidegree ([1], [1]), that is, a vertex of Botd (o) (([1], [1]), (1), R):

Remark 8.68. In general the objects

BOI'd(SOO’d), %Utb(soo’d)

(globular or mutliple) are not fibrant in the respective model category “ngat%oy d
(this denotes either the multiple injective model structure or the globular one). This
is no problem however, since in the end we will be interested solely in derived Hom-
spaces. Since any object in %OOCat%Qd) is cofibrant, we do not need to (co)fibrantly

replace Bord?md) or %Ota(snd) in the domain slot of our derived Homs.
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8.6. Functoriality of Bordism Categories. In the previous few pages we have
witnessed that there are assignments of objects

Ob(Psha (FEmbg)) — Ob(€*Cat, ,), S+~ Bord(, g
Ob(Psha (§€mb,)) — Ob(€*Cat, ), S Bordy, g

where %OOCat®w 4 could stand both for the globular injective model structure and
the multiple injective model structure. It is readily observed that these maps extend
to yield a functor between the respective categories. For example, the functor

— uple
Bord(,), ..: Psha(FEmb,) — &% Cat®"h)

does the obvious things to objects:
S — Bord(soo,d),uple
A morphism S — T in Psha (FEmb,) is mapped to the morphism
E;OI‘d?m’d)7 i BOYd’(TOO}d)

uple ,uple

obtained from the induced maps

[T S(MxU-U) [T T(MxU-U)
(M,C,P) (M,C,P)

11 S(MxU—»U) ——— 11 T(M x U — U)
(M,C,P)%(M,C,B) (M,C,P)%(M,C,P)

by applying diag o 9. We then have the following:
Proposition 8.69. Let d > 0. The functors

Bord(,), 1: Psha(FEmbg)ing — €*Cat&™°, S — Bordf, 4) e
Bord(,.)g) g, Pha (FBmby)in — €*CatZE 8 Bordg, ) o

are left Quillen functors that preserve all weak equivalences. In particular, they are
homotopy continuous. Similarily, let Psha(F€mby)in; denote the injective model
structure on enriched presheaves. The functors

%Otbgo_o),d),uplcz Psha (%’embd)mj - %wcat%%olfs)lea S — SBOta(soo,d),uple
_ ,glob
Bord| ) 1t Psha(F€mba)in — FFCat&E", 8o Bords o) gion

are left Quillen functors that preserve all weak equivalences. In particular, they are
homotopy cocontinuous.

Proof. Let us simply write Bord(y, 4y for both variants (globular and multiple). By

definition S — Bord(SOO’ d) preserves monomorphisms and it maps weak equivalences
to weak equivalences. Of course this functor is a left adjoint: its right adjoint is
given by sending X € %OOCat%o ) to the simplicial presheaf

(M — U) — Map(Bord! """, X)

The same argument works for Botd o g)- O

More generally, the main result in [16] is the following:
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Theorem 8.70. The functors
Psha (FEmba)g,q, — €*Catd ,, S~ Bord(,
Psha (sémbd)écch - Cgooca’t?oo,d)’ S — %Uta(soovd)

are left Quillen functors. In particular, they are (00, 1)-cosheaves, i.e., they preserve
homotopy colimits.

8.7. Symmetric Monoidal Structure of Smooth Bordism Categories. We
shall investigate the symmetric monoidal structure of gBord s 4) glon- The other
variants of bordism categories are analogous.

Proposition 8.71. The functor gBord s 4) g1ob Satisfies Segal’s special I'-condition.
Proof. Let € := gBord e, a),gloh- We have to show that the induced morphism

@)

where (53 = @0, is an objectwise weak equivalence. We first note that the single

(81,---,01)

€1

morphism 4, takes a bordism and forgets about all the information that is not
contained in the i-th slot P~{i}. In other words, applying 62!» forgets about all
the other connected components except the i-th. The most natural candidate for a
homotopy inverse is then, unsurprisingly so, the [-fold disjoint union
l 1 l
[[: 8 - €W,  (M,C1,P),..., (M, C, P)) — (] [Mi, [ [Ci, [ [ P2)
i=1 i=1 =1
where || M; is the manifold obtained by taking the disjoint union over all M,
while [ [ C; is simply the cut-tuple obtained from the respective cut-functions for
each M; x U by just taking their disjoint union. The map of connected components
[ 1P is then defined by means of

i, if Pi(mi7u) =1

=, else

L[Pi:L[MiXU—><l>, MiXUa(mhu);_){

We then note that Hl actually yields a genuine inverse for (83, ...,d;) (recall that
we work in gBord, hence the Segal condition is verified. U

Remark 8.72. Of course the above Proposition is wrong if we talked about gBord(SOO, dy»

%otb(socﬁd) etc. for some non-trivial geometric structure. However, after passing to
some fibrant replacement of the corresponding bordism category everything works
out again.

We recall that the tensor co-functor for a symmetric monoidal co-category was
constructed by taking a weak inverse of the map (4}, 8}), so in our case [ [: €(1)* —
%(2), and then by precomposing this weak inverse with ', where p: (2) — (1),1,2
1. By means of that, we obtain ®:

w12 — %0
o 4

-
€(1)

Since ® is essentially taking the disjoint union itself with the difference that we
collect all connected components in the slot 1 € (1) (this is what postcomposing
[] with ¢' does after all), we shall again write [[ = ®. For completeness, let us
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consider the remaining structure maps for symmetric monoidality. For this, let
us take the invesigate the variant Botd 1), as this allows us to also talk about
duality information. We use the notation from the proof of Propostion 7.89. The
unit object for the monoidal structure is of course given by the empty set (in fact,
by any triplet (M, C, P) where P: M x U — (1) is a partition function mapping
everything to *). The left and right unitors are essentially identities

%O'CD(OO d)<]—> —> %Otb(oo d)<2> 17 2) %Otb(oo d)<1> X %Otb © d)<]->

11
Bord (o0,4)(2)

Bord (o0, a)(1)
Analogously, the braiding is an identity:
Botd(o0,q) (1) X Botd(o,¢y¢1) —> Bord (0,q)(2) t Bord (o,4)(2)
(61,03)
Botd(o0,q)(1) X Botd (g, ¢y¢1)

11
Bord (o, ¢)(2)

o

%Otﬁ(ooyd)<l>

And similarily the associator is just an identity. Evaluation and coevaluation maps
for some point x may be given by:



But then the triangle identities for the duality data are trivially satisfied up to
homotopy (isotopy):




9. SMOOTH FUNCTORIAL FIELD THEORIES

Circumstantial evidence is a very
tricky thing. It may seem to point
very straight to one thing, but if
you shift your own point of view a
little, you may find it pointing in
an equally uncompromising manner
to something entirely different.

Sherlock Holmes, The Boscombe
Valley Mystery

This chapter is based on the papers [24] and [17], as well as on discussions with
Dmitri Pavlov.

9.1. The Topological Cobordism Hypothesis. Let us first delve into the for-
mulation of the cobordism hypothesis as given by Lurie in [24]. Lurie also con-
structed an (00, d)-category JBord s 4) of bordisms. We will not review his con-
struction in detail, but we will give the following sketch from [24]:

Definition 9.1. Let d be a nonnegative integer. The globular (o0, d)-category %Bord o 4
is described informally as follows:

e The objects of Bord( 4) are O-manifolds.

e The 1-morphisms of %Bord y 4) are bordisms between 0-manifolds.

e The 2-morphisms of %Bord 4) are bordisms between bordisms between
0-manifolds.

e The n-morphisms of %Bordy q) are bordisms between bordisms between
... between bordisms between 0-manifolds (in other words, n-manifolds
with corners).

e The (d + 1)-morphisms of Bord 4y are diffeomorphisms (which reducce
to the identity on the boundaries of the relevant manifolds).

e The (d + 2)-morphisms of Bordy 4) are isotopies of diffeomorphisms.

In particular, we may also consider the variants LBord?OO’d) and LBord?go’d) where
manifolds come equipped with d-framings and orientations, respectively.

Let € be a symmetric monoidal (00, d)-category. In Lurie’s setting a €-valued
d-dimensional (framed) topological quantum field theory is a symmetric monoidal
co-functor

§: Bord(, 4 > €

By means of the corresponding derived internal hom, we obtain a symmetric monoidal
(00, d)-category of topological quantum field theories, denoted by

Fun®(Bord(l, 4, %)

The statement of the most prominent variant of the topological cobordism hypothesis
is then the following:

Theorem 9.2 ([24]). Let € be a symmetric monoidal (00, d)-category with duals.
Then the evaluation functor § — F(pt) induces an equivalence

Fun®(9§ord€roc,d), €) > €~

where (=)™ : Cat?o’}z — Grpd?O is the functor which extracts the maximal co-subgroupoid
(see 7.136). In particular, Fun®(¢%’ordfgoyd), €) is an (00,0)-category.
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Remark 9.3. It is no restriction to assume that € has duals in the above theorem.
In fact, for any symmetric monoidal (oo, d)-category €, the canonical map

Fun®(9301rdfroo’d)7 A mn®(%0rd€&¢d)7 €)

is an equvialence of (o0, d)-categories. Combining this observation with the above
Theorem yields

Fun®(Bord(l, 4, %) ~ (™)~

Remark 9.4. The topological cobordism hypothesis can be restated by saying that
the (o0, d)-category (%’ord?goﬁd) is the free symmetric monoidal (00, d)-category with
duals generated from a single object.

9.2. Geometric Field Theories. The goal of this section is to both generalize
and make precise what we did in the previous motivational chapter. In the following
we shall simply write %otb(sood) instead of %otb(sogd),glob. In light of the definition
of topological quantum field theories, the following seems most natural:

Definition 9.5. Let € be a smooth symmetric monoidal (o0, d)-category and let
S be a d-dimensional geometric structure with isotopies. A d-dimensional smooth
@ -valued functorial field theory with geometry S is a smooth symmetric monoidal
co-functor §: %Ota(soo,d) — @.

Ezxample 9.6. It is folklore that the theory of Quantum mechanics may be encoded
as a suitable one-dimensional quantum field theory where the corresponding bor-
dism category is endowed with the geometric structure of Riemmanian metrics. In
particular, special emphasis needs to be given to the target of our quantum field
theory so as to properly encode quantum mechanics. The idea is the following. For

com?
a smooth functorial field theory §: ’Botbgzéalnl
symmetric monoidal (oo, 1)-category (ideally with duals) of values. Typically we
would assume & to be something like the (o0, 1)-categorical version of the category

of vector spaces (i.e. the Rezk nerve of Vect), or even Hilbert spaces etc. An object

iom
of Baro ™,
A 1-morphism, that is, a bordism [0, ] of length I is mapped to an automorphism
§i: ¢ = c. Functoriality then implies that if we have composable bordisms with

lengths [0, 1], [I,1 4+ I'], then we have
S = S

which is precisely the time propagation property of the solution to the Schrédinger
equation [ — e~ where $) denotes the Hamiltonian of the given quantum me-
chanical system.

— & where € is a suitable (smooth)

say a single point e is mapped to the state space ¢ := Z (o) € .

We recall that in our setting the notion of a U-family of d-framings was encoded

by means of the representable enriched presheaf & (R? x U —» U). We then note

d
that %otb(“koc(]i)XUﬂU) has a canonical object:

Definition 9.7. Let d > 0 and let {e;}, be the standard orthonormal basis of R%.
Let
pt = (Rd, (CPxU|1<k<d), 1: R x U — (1), (idexU,idU))

be the object in ‘Botbfoé%XU_»U)(O,ﬂ% U) with C* = span{e; | i # k}, and

1: R x U — (1) is the constant 1-function, while (idga,,idy) is the geometric
structure given by the identity morphism in FEmbg(R? x U — U, RY x U — U).



By the Yoneda Lemma the above object may be interpreted as a map

pt: 5(0,(1),U) — Bord; R)XU*U)

This gives rise to an evaluation map

Fun®(Boro % *V =) %) O Map(jU,EX)
pt” =
Fun®(j(0,(1),U), €)* = Map(j((1),V),€>)

where the isomorphism Fun®(j(0, (1), U), €)* — Map(j({1), V), €*) is induced by
the adjunction from Lemma 7.134 for m = 0, while the other isomorphism follows
from the fact that j{1) is the monoidal unit with respect to the Day convolution
tensor product. Evaluation at pt leads to the the Geometric Framed Cobordism
Hypothesis:

Theorem 9.8 (Geometric Framed Cobordism Hypothesis [17]). Fiz d > 0,U € Cart,

and let € be a smooth symmetric monoidal (o0, d) category with duals. The smooth

symmetric monoidal (o0, d)-category Fun® (%otb( is a smooth sym-

metric monoidal c0-groupoid, i.e., the inclusion of the core yzelds a weak equivalence

m %xCat%OTd) :
£,...d) (Fun (%ota( (R;)XU”U),%)X) = Fun®(%0ta(éi(lR)><Uﬁ»U) %)

where £¢1 . qy was defined right before Lemma 7.135. Furthermore, evaluation at
the point (see 9.7) yields an equivalence of smooth symmetric monoidal c0-groupoids

eoal(U): Fun® (Bord, “R)XU*’U’ €)* —=— Map(jU, €>)

Remark 9.9. We note that if we evaluate the above weak equivalence at U = RO,
we obtain an equivalence

Fun (%ota(ooﬂfl)ww> ©)* (R) —=— Map(jU, €*)(R°) =~ €* (U)

which gives a U-family version of Lurie’s topological cobordism hypothesis (Theo-
rem 9.2).

Theorem 9.10 (Geometric Cobordism Hypothesis [17]). Let d > 0, and fix a smooth
symmetric monoidal (00, d)-category € with duals and a d-dimensional geometric
structure S with isotopies. Let € : FEmb)® — Psha(I" x Cart) be the (fibrant)
simplicial presheaf with values in smooth symmetric monoidal c0-groupoids defined
by

(M — U) > Fun®(Boro 1)) %)

The smooth symmetric monoidal (00, d)-category Fun®(%otb(oo7d),%) is a smooth
symmetric monoidal c0-groupoid, i.e., the inclusion of the core yields a weak equiv-
alence in %OOCat%’)Td)

ce,..dy (Fun®(%ot0(soo,d), €) X) = Fun®(‘Bat0(Soo,d), €)
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Furthermore, we have a natural weak equivalence (in fact, an isomorphism)
Fun®(Bord(, 4, )" ~ Mapgeme, (S, 6;)

Proof. By the enriched version of Corollary 6.43 and Proposition 8.22 we know that
any geometric structure S may be written as a homotopy colimit

S =~ hocolim & (R x U — U)
RidxU—S

We then calculate
hocolim & (R*xU—U)

Fun®(Bord(, 4, 6) ~ Fun®(%otbﬂz;f5)ﬁs ,6)
N . ® X (RExU—U)
~ R?ggrils Fun®(Bovd )
~ holim &R x U - U)
RixU—S
~ holim 9 RYx U - U), €
i TP R T U= 1))
~ holim f Map(L (R x U — U)(N - V), € (N - V))
xU—
N—-»V
~ _holim Mapsens, (R! x U — U,€;)

~ Mapzeme, (S, €,)
O

The geometric cobordism hypothesis is therefore really all about smooth spaces
of field theories and it tells us that we can calculate these by instead calculating
the simpler objects Mapzemp, (S, €, ). In practice we can use the following scheme
to calculate Mapzemp, (S, €):

(i) Guess a candidate @: FEmb}” — Psha(I" x Cart) which satisfies the
descent condition with respect to FEmb,.
(71) Write down any natural map 20: 2 — €.
(ii1) Prove that the composition of maps

2R x U *"U) —E S GRIXU »U) ~ Fun®(%0tb(°koc(]}§;XU_”U),%)

eval(U)

}

Map (iU, €*)

is a weak equivalence.
(iv) From this we deduce (by the 2-out-of-3 property) that 20 is a local weak
equivalence.
(=%)
0)
with the (unenriched) geometric structure from Example 8.9. Moreover, denote by
0 the smooth symmetric monoidal co-groupoid given by the assignment

(1, U) = D), U) == € (U,R)'

where the set €*(U,R) is interpreted as a constant simplicial set. Noting that
FeEmbCarty = Cart, the geometric cobordism hypothesis states that

Fun®(%0ta‘(goooo,(())_):£)7 m) = 9:napCart ((gOO(_7 x)a m)

Ezxample 9.11. Consider the 0-dimensional bordism category %otbij endowed



= | map(er ). 9w)
UeCart
The Yoneda lemma then implies

Fun®(Bowo(, (Y, W) ~ B(X) = €°(X,R)*

Hence, the smooth space of 0-dimensional smooth functorial field theories with
geometry €% (—, X) is the space of smooth functions from X to R.
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